
Haskell: Functions
Haskell: Lists

CS 331 Programming Languages

Lecture Slides

Monday, February 24, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

2025-02-24 CS 331 Spring 2025

Unit Overview
The Haskell Programming Language

Topics

▪ PL feature: type system

▪ PL category: functional PLs

▪ Introduction to Haskell

▪ Haskell: functions

▪ Haskell: lists

▪ Haskell: flow of control

▪ Haskell: I/O

▪ Haskell: data

2

Review

2025-02-24 CS 331 Spring 2025 3

Review
PL Category: Functional PLs

A typical functional programming language has the following
characteristics.

▪ It has first-class functions.

▪ It offers good support for higher-order functions*.

▪ It offers good support for recursion.

▪ It has a preference for immutable** data.

A pure functional PL goes further, and does not support mutable
data at all. There are no side effects*** in a pure functional PL.

*A higher-order function is a function that acts on functions.

**A value is mutable if it can be changed. Otherwise, it is
immutable—like const values in C++.

***Code has a side effect when it makes a change, other than
returning a value, that is visible outside the code.

2025-02-24 CS 331 Spring 2025 4

Review
Introduction to Haskell — Characteristics: Syntax, Type System

Haskell is a pure functional PL.

Haskell has significant indentation. Indenting is the usual way
to indicate the start & end of a block.

Haskell has a sound static type system with sophisticated type
inference. So typing is largely implicit; however, we are allowed
to write type annotations, if we wish.

square :: Integer -> Integer

square n = n*n

Haskell’s type system is extensible. We can create new types, but
we do not use object-oriented constructions to do so.

2025-02-24 CS 331 Spring 2025

Optional type annotation.
If this annotation were not
present, then we could
pass fractional values to
function square.

5

Review
Introduction to Haskell — Characteristics: Flow, Evaluation

Haskell has no loops! Instead of iteration, Haskell uses recursion.

However, we often do not make recursive calls explicitly. Instead,
we use functions that encapsulate recursive execution.

> map square [1, 3, 5, 8]

[1,9,25,64]

By default Haskell does lazy evaluation: expressions are not
evaluated until they need to be.

2025-02-24 CS 331 Spring 2025

Encapsulated loop-like
construction.

6

Haskell: Functions

2025-02-24 CS 331 Spring 2025 7

Haskell: Functions
Basic Syntax [1/4]

Comments

▪ Single line. Two dashes to end of line: -- … (like Lua)

▪ Multi-line. Begin with brace-dash, end with dash-brace: {- … -}

Identifiers begin with a letter or underscore, and contain only
letters, underscores, digits, and single quotes (').

There are two kinds of identifiers (terminology below is mine):

▪ Normal identifiers begin with a lower-case letter or underscore.
These name variables—including functions.

▪ Special identifiers begin with an UPPER-CASE letter. These name
modules, types, and constructors. This is not merely a convention!

myVariable -- Normal

_my_Function'_33 -- Normal

MyModule -- Special

2025-02-24 CS 331 Spring 2025

For code from this topic,
see func.hs.

8

Haskell: Functions
Basic Syntax [2/4]

To define a function, write what looks like a call to the function, an
equals sign, and then an expression.

addem a b = a+b

> addem 2 3

5

Parentheses may be used around individual arguments, to override
precedence & associativity.

addem 18 (5*7)

2025-02-24 CS 331 Spring 2025

This represents
the GHCi prompt.

9

Haskell: Functions
Basic Syntax [3/4]

Function definitions use pattern matching. Define a function
differently for different patterns. The first matching pattern is
the one used.

Here is a Fibonacci function using the slow method.

slowfibo 0 = 0

slowfibo 1 = 1

slowfibo n = slowfibo (n-1) + slowfibo (n-2)

2025-02-24 CS 331 Spring 2025

We need parentheses here, because
function application has high precedence.
So “fibo n-1” would be the same as
“(fibo n) - 1”.

Patterns

10

Haskell: Functions
Basic Syntax [4/4]

Use where to introduce a block (indent!) of local definitions.

plus_minus_times a b c d = a_plus_b * c_minus_d where

 a_plus_b = a + b

 c_minus_d = c - d

Local-definition blocks can be nested.

twiceFactorial n = twice (factorial n) where

 twice k = two*k where

 two = 2

 factorial 0 = 1

 factorial curr = curr * factorial prev where

 prev = curr-1

2025-02-24 CS 331 Spring 2025

We need parentheses here because
function application is left-associative.
So “twice factorial n” would be
the same as “(twice factorial) n”.

The tutorial mentioned let … in, which
puts local definitions before the main code.
The where construction puts them after it.

11

Haskell: Functions
Lambda Functions

A lambda function is a kind of expression
whose value is a function. In other words,
it is a function with no name.

Haskell introduces a lambda function with a backslash (\), since it

looks a little like a lambda.

square x = x*x

square' = \ x -> x*x -- Same

-- Alternate definitions for addem

addem' = \ a b -> a+b

addem'' = \ a -> \ b -> a+b

addem''' a = \ b -> a+b

2025-02-24 CS 331 Spring 2025

The name comes from the
lambda calculus, a

mathematical system in
which an unnamed function

is introduced using the
Greek letter lambda (λ).

Lambda function

12

Haskell: Functions
Defining Operators [1/3]

We can also define new infix binary operators. As with functions,
we write what looks like a call to the operator, an equals sign,
and then an expression.

Here is the definition of an operator (+$+).

a +$+ b = 2*a + b

Operator names can use any of the following 20 characters. They
must not begin with a colon (:); those are special names.

! # $ % & * + . / < = > ? @ \ ^ | - ~ :

2025-02-24 CS 331 Spring 2025 13

Haskell: Functions
Defining Operators [2/3]

We can optionally set an infix binary operator’s precedence and
associativity. (Default: precedence 9, left-associative.)

a +$+ b = 2*a + b

infixl 6 +$+ -- Left-associative, precedence level 6

 -- Use infixr for right associativity

2025-02-24 CS 331 Spring 2025

Operators Precedence Associativity

Function application 10 Left

* / 07 Left

+ - 06 Left

: ++ 05 Right

== /= < <= > >= 04 None

&& 03 Right

|| 02 Right

++ is list
concatentation.

/= is inequality.

Haskell function application
is an invisible operator.

slowfibo 6

14

Haskell: Functions
Defining Operators [3/3]

We can use a regular function as an infix binary operator by
surrounding its name with backquotes (`).

2 `addem` 3

And we can use an infix binary operator as a regular function by
placing its name in parentheses.

(+$+) 5 7

2025-02-24 CS 331 Spring 2025 15

Haskell: Functions
Currying [1/2]

Think of a function as eating its arguments.

To simulate a multiple-argument function, write a function that
eats one argument, then returns a function that eats the rest.

Except that second function really only eats one (the second
original argument) and returns a function that eats the rest. Etc.

The last function eats the last argument. Its return value is the
final return value—which might not be a function.

This is currying, after Haskell Curry: simulating a multiple-
argument function using a single- argument function that
returns a function.

2025-02-24 CS 331 Spring 2025

For an example of currying

in C++, see curry.cpp.

16

Haskell: Functions
Currying [2/2]

Again, Haskell function application is an invisible operator. It is
high-precedence and left-associative [f a b is (f a) b].

So multiple-argument functions in Haskell are curried. (Right?)

For example, our function addem really takes one argument. It
returns a function that adds that argument to something. The
following are the same, because of left associativity:

addem 2 3 -- Returns 5

(addem 2) 3 -- Returns 5

The intermediate function is not merely theoretical. For example,
we can store it in a variable.

add2 = addem 2

add2 3 -- Returns 5

2025-02-24 CS 331 Spring 2025

I imagine that the existence of
currying is the reason the Haskell
PL was not named “Curry”; the

term was already used.

17

Haskell: Lists

2025-02-24 CS 331 Spring 2025 18

Haskell: Lists
Lists & Tuples [1/5]

A statically typed programming language will typically support two
categories of collections of multiple items:

▪ Collections containing a varying number of items, all of the same
type. Examples: C++ vector, list, deque; Java ArrayList,
ArrayDeque.

▪ Collections containing a fixed number of items, possibly of different
types. Examples: C++ tuple, struct; Java tuple types.

Haskell supports the above two categories as well, in the form of
lists and tuples, respectively.

2025-02-24 CS 331 Spring 2025

For code from this topic,
see list.hs.

19

Haskell: Lists
Lists & Tuples [2/5]

A Haskell list holds an arbitrary number of data items, all of the
same type. A list literal uses brackets and commas.

[] -- Empty list

[2, 5, 3] -- List of three Integer values

["hello", "there"] -- List of two String values

[[1], [], [1,2,3,4]] -- List of lists of Integer

[1, [2, 3]] -- ERROR; types differ

Thanks to lazy evaluation, Haskell lists can be infinite.

[1, 3 ..] -- List of ALL nonnegative odd Integers

2025-02-24 CS 331 Spring 2025 20

Haskell: Lists
Lists & Tuples [3/5]

The type of a list is written as the item type in brackets.

> :t [True, False]

[True, False] :: [Bool]

Lists with different lengths can have the same type.

> :t [False, True, True, True, True, False]

[False, True, True, True, True, False] :: [Bool]

2025-02-24 CS 331 Spring 2025 21

Haskell: Lists
Lists & Tuples [4/5]

When looking at lists—particularly infinite lists—a useful function is
take. This takes a nonnegative integer count and a list. It
returns a list containing the first count items of the given list.

> [1, 3 ..]

[1,3,5,7,9,11,13,15,17,19,21,23, … goes on and on …

> take 6 [1, 3 ..]

[1,3,5,7,9,11]

If the given list has fewer than count items, then the same list is
returned.

> take 100 [5, 4, 3]

[5,4,3]

2025-02-24 CS 331 Spring 2025 22

Haskell: Lists
Lists & Tuples [5/5]

A Haskell tuple holds a fixed number of data items, possibly of
different types. A tuple literal uses parenthesis and commas.

(2.1, 1.2, "hello", True) -- Tuple: Double, Double,

 -- String, Bool

Haskell tuples cannot be infinite.

The type of a tuple is written as if it were a tuple of types.

> :t (2.1, True)

(2.1, True) :: (Double, Bool)

Tuples with different numbers of items always have different types.

2025-02-24 CS 331 Spring 2025 23

Haskell: Lists
List Primitives [1/2]

A primitive (operation) is a fundamental operation
that other operations are constructed from.

Haskell has three list primitives.

1. Construct an empty list.

[]

2. Cons: construct a list given its first item and a list of other items.
Uses the infix colon (:) operator.

[5, 2, 1, 8]

5:[2, 1, 8] -- Same as above

5:2:1:8:[] -- Also the same; ":" is right-associative

Continued …

2025-02-24 CS 331 Spring 2025

This terminology
is not specific to

Haskell.

24

Haskell: Lists
List Primitives [2/2]

Three Haskell list primitives, continued

3. Pattern matching for lists.

ff [] = 3 -- Value of ff for an empty list

ff (x:xs) = 4 -- Value of ff for a nonempty list

A common convention: read “x:xs” as “x and some xs (plural)”.

Pattern matching can be done using […, …] as well.

gg [a] = 17 -- Value of gg for any 1-item list

gg [a, b, c] = 19 -- Value of gg for any 3-item list

2025-02-24 CS 331 Spring 2025

Parentheses are required
due to the high precedence
of function application.

25

Haskell: Lists
Other List Syntax — Strings

A Haskell String is a list of characters (Char values). A Char literal
uses single quotes.

['a', 'b', 'c']

"abc" -- Same as above

The tutorial presented ++ as the String concatenation operator. It
is, but, more generally, it is the list concatenation operator.

> "abc" ++ "def"

"abcdef"

> [1,2,3] ++ [4,5,6]

[1,2,3,4,5,6]

2025-02-24 CS 331 Spring 2025 26

Haskell: Lists
Other List Syntax — Ranges

Use “..” to construct a list holding a range of values.

There are exactly four ways to do this.

[1..10] -- Same as [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

[1,3..10] -- Same as [1, 3, 5, 7, 9]

[1..] -- Infinite list: [1, 2, 3, 4, 5, 6, 7, 8, …]

[1,3..] -- Infinite list: [1, 3, 5, 7, 9, 11, …]

These four are wrappers around overloaded functions enumFromTo,
enumFromThenTo, enumFrom, and enumFromThen, respectively.

[1,3..10]

enumFromThenTo 1 3 10 -- Same as above

2025-02-24 CS 331 Spring 2025 27

Haskell: Lists
Other List Syntax — List Comprehensions [1/2]

You have probably seen the mathematical notation known as a set
comprehension (or set-builder notation). Here is an example.

 { xy | x ∈ {3, 2, 1} and y ∈ {10, 11, 12} }

The above is read as, “The set of all xy for x in the set {1, 2, 3}
and y in the set {10, 11, 12}.”

A number of PLs, including Haskell, have a construct based on this
idea: the list comprehension. Here is a Haskell example.

[x*y | x <- [3, 2, 1], y <- [10, 11, 12]]

This deals with Haskell lists instead of sets, but is otherwise very
similar to the above set comprehension.

2025-02-24 CS 331 Spring 2025 28

Haskell: Lists
Other List Syntax — List Comprehensions [2/2]

A list comprehension consists of brackets enclosing the following:

▪ An expression.

▪ Then a vertical bar (|).

▪ Then a comma-separated list of two kinds of things:
▪ var <- LIST

▪ Expression of type Bool

Examples

> [x*x | x <- [1..6]]

[1,4,9,16,25,36]

> [x*y | x <- [3, 2, 1], y <- [10, 11, 12]]

[30,33,36,20,22,24,10,11,12]

> [x | x <- [1..20], x `mod` 2 == 1]

[1,3,5,7,9,11,13,15,17,19]

2025-02-24 CS 331 Spring 2025

Similar to
nested for-loops.

29

Haskell: Lists
Lists & Recursion [1/4]

In a function that takes a list, it is common to have two cases:

▪ The empty list: [].

▪ Nonempty lists. A pattern like b:bs matches any nonempty list.

TO DO

▪ Write a function isEmpty that determines whether a list is empty.

A function taking a list will often be recursive, with the base case
handling an empty list, while the recursive case handles a
nonempty list. This typically does a computation with the head
(b above) and makes a recursive call on the tail (bs above).

TO DO

▪ Write a function listLength that returns the length of a list.

2025-02-24 CS 331 Spring 2025

Done. See list.hs.

Done. See list.hs.

30

Haskell: Lists
Lists & Recursion [2/4]

Prelude function map applies a function to each item of a list.

> square x = x*x

> square 5

25

> map square [2,5,10,7,1]

[4,25,100,49,1]

> squareList = map square

> squareList [2,5,10,7,1]

[4,25,100,49,1]

TO DO

▪ Write a function myMap that does the same thing as map.

2025-02-24 CS 331 Spring 2025

Because of currying, we can also
think of map as a higher-order
function. It takes a function that
is given a single item and returns
a function that is given a list.

map can always be replaced
by a list comprehension.
See the first example two

slides back.

Done. See list.hs.

31

Haskell: Lists
Lists & Recursion [3/4]

Prelude function filter takes a predicate and a list. It returns a
list of items that pass the test.

> isBig x = x >= 6

> isBig 5

False

> filter isBig [2,5,10,1,7]

[10,7]

TO DO

▪ Write a function myFilter that does the same thing as filter.

Useful: if COND then EXPR1 else EXPR2.

▪ COND is an expression of type Bool. If it is True, then EXPR1 is
returned. If it is False, then EXPR2 is returned.

▪ Expressions EXPR1 and EXPR2 must have the same type.

2025-02-24 CS 331 Spring 2025

A predicate is a function that
returns a Boolean. We can
think of it as performing a

pass/fail test. (This terminology
is not specific to Haskell.)

filter can always be
replaced by a list

comprehension. See the third
example three slides back.

Done. See list.hs.

32

Haskell: Lists
Lists & Recursion [4/4]

Sometimes other kinds of recursion are used.

TO DO

▪ Write a function lookInd that does item lookup by index (zero-
based) in a list.

Useful

▪ The pattern “_” matches any single entity but cannot be used in the
right-hand side of a definition. So it means unused value.

▪ error is an overloaded function that takes a String and returns
any type at all. When it executes, it crashes, printing an error
message, which will include the given String.

▪ undefined is like error, but it takes no arguments.

2025-02-24 CS 331 Spring 2025

Done. See list.hs.

33

	Slide 1: Haskell: Functions Haskell: Lists
	Slide 2: Unit Overview The Haskell Programming Language
	Slide 3
	Slide 4: Review PL Category: Functional PLs
	Slide 5: Review Introduction to Haskell — Characteristics: Syntax, Type System
	Slide 6: Review Introduction to Haskell — Characteristics: Flow, Evaluation
	Slide 7
	Slide 8: Haskell: Functions Basic Syntax [1/4]
	Slide 9: Haskell: Functions Basic Syntax [2/4]
	Slide 10: Haskell: Functions Basic Syntax [3/4]
	Slide 11: Haskell: Functions Basic Syntax [4/4]
	Slide 12: Haskell: Functions Lambda Functions
	Slide 13: Haskell: Functions Defining Operators [1/3]
	Slide 14: Haskell: Functions Defining Operators [2/3]
	Slide 15: Haskell: Functions Defining Operators [3/3]
	Slide 16: Haskell: Functions Currying [1/2]
	Slide 17: Haskell: Functions Currying [2/2]
	Slide 18
	Slide 19: Haskell: Lists Lists & Tuples [1/5]
	Slide 20: Haskell: Lists Lists & Tuples [2/5]
	Slide 21: Haskell: Lists Lists & Tuples [3/5]
	Slide 22: Haskell: Lists Lists & Tuples [4/5]
	Slide 23: Haskell: Lists Lists & Tuples [5/5]
	Slide 24: Haskell: Lists List Primitives [1/2]
	Slide 25: Haskell: Lists List Primitives [2/2]
	Slide 26: Haskell: Lists Other List Syntax — Strings
	Slide 27: Haskell: Lists Other List Syntax — Ranges
	Slide 28: Haskell: Lists Other List Syntax — List Comprehensions [1/2]
	Slide 29: Haskell: Lists Other List Syntax — List Comprehensions [2/2]
	Slide 30: Haskell: Lists Lists & Recursion [1/4]
	Slide 31: Haskell: Lists Lists & Recursion [2/4]
	Slide 32: Haskell: Lists Lists & Recursion [3/4]
	Slide 33: Haskell: Lists Lists & Recursion [4/4]

