Haskell: Functions
Haskell: Lists

CS 331 Programming Languages
Lecture Slides
Monday, February 24, 2025

Glenn G. Chappell
Department of Computer Science

University of Alaska Fairbanks
ggchappell@alaska.edu

© 2017-2025 Glenn G. Chappell

Unit Overview
The Haskell Programming Language

Topics

v'= PL feature: type system
v'= PL category: functional PLs
v'= Introduction to Haskell

= Haskell: functions

= Haskell: lists

= Haskell: flow of control

= Haskell: I/O

= Haskell: data

2025-02-24 CS 331 Spring 2025

Review

2025-02-24 CS 331 Spring 2025

Review
PL Category: Functional PLs

A typical functional programming language has the following
characteristics.

= It has first-class functions.

= It offers good support for higher-order functions*.
= It offers good support for recursion.
= It has a preference for immutable** data.

A pure functional PL goes further, and does not support mutable
data at all. There are no side effects*** in a pure functional PL.

*A higher-order function is a function that acts on functions.

**A value is mutable if it can be changed. Otherwise, it is
immutable—like const values in C++.

***Code has a side effect when it makes a change, other than
returning a value, that is visible outside the code.

2025-02-24 CS 331 Spring 2025

Review
Introduction to Haskell — Characteristics: Syntax, Type System

Haskell is a pure functional PL.

Haskell has significant indentation. Indenting is the usual way
to indicate the start & end of a block.

Haskell has a sound static type system with sophisticated type
inference. So typing is largely implicit; however, we are allowed
to write type annotations, if we wish.

Optional type annotation.

square :: Integer -> Integer <€<—— If this annotation were not
present, then we could
square n = n*n pass fractional values to

function square.

Haskell’s type system is extensible. We can create new types, but
we do not use object-oriented constructions to do so.

2025-02-24 CS 331 Spring 2025

Review
Introduction to Haskell — Characteristics: Flow, Evaluation

Haskell has no loops! Instead of iteration, Haskell uses recursion.

However, we often do not make recursive calls explicitly. Instead,
we use functions that encapsulate recursive execution.

¥ Encapsulated loop-like
> map square [1, 3, 5, 8] construction.

[1,9,25,064]

By default Haskell does lazy evaluation: expressions are not
evaluated until they need to be.

2025-02-24 CS 331 Spring 2025

Haskell: Functions

2025-02-24 CS 331 Spring 2025

Haskell: Functions
Basic Syntax [1/4]

Comments
= Single line. Two dashes to end of line: -- ... (like Lua)
= Multi-line. Begin with brace-dash, end with dash-brace: {- ... -}

Identifiers begin with a letter or underscore, and contain only
letters, underscores, digits, and single quotes (').

There are two kinds of identifiers (terminology below is mine):
= Normal identifiers begin with a lower-case letter or underscore.
These name variables—including functions.

= Special identifiers begin with an UPPER-CASE letter. These name
modules, types, and constructors. This is not merely a convention!

myVariable —— Normal
~my Function' 33 -- Normal
MyModule -— Special For code from this topic,

see func.hs.

2025-02-24 CS 331 Spring 2025

Haskell: Functions
Basic Syntax [2/4]

To define a function, write what looks like a call to the function, an
equals sign, and then an expression.

addem a b = a+b

yd This represents
> addem 2 3 the GHCi prompt.

5

Parentheses may be used around individual arguments, to override
precedence & associativity.

addem 18 (5*7)

2025-02-24 CS 331 Spring 2025 9

Haskell: Functions
Basic Syntax [3/4]

Function definitions use pattern matching. Define a function
differently for different patterns. The first matching pattern is
the one used.

Here is a Fibonacci function using the slow method.
— Patterns

slowfibo|O|= 0
slowfibol|l]|= 1
slowfibol|n|= slowfibo (n-1) + slowfibo (n-2)

N/

We need parentheses here, because
function application has high precedence.
So “fibo n-1" would be the same as
“(fibo n) - 1"

2025-02-24 CS 331 Spring 2025

Haskell: Functions
Basic Syntax [4/4]

Use where to introduce a block (indent!) of local definitions.

plus minus times a b c d
a + b

a plus b

c minus d C d

a plus b * ¢ minus d where

We need parentheses here because

function application is left-associative.

So “twice factorial n” would be

n

the same as " (twice factorial) n".

Local-definition blocks can be nested. /

twiceFactorial n = twice
twice k = two*k where
two = 2
factorial 0 =1

factorial curr

prev curr-1

2025-02-24

(factorial n)

curr * factorial prev

where

where

The tutorial mentioned 1let ... in, which
puts local definitions before the main code.
The where construction puts them after it.

CS 331 Spring 2025

11

Haskell: Functions
Lambda Functions

A lambda function is a kind of expression The name comes from the
whose value is a function. In other words, lambda calculus, a
TR . . mathematical system in
it is a function with no name. which an unnamed function

is introduced using the
Greek letter lambda (A).

Haskell introduces a lambda function with a backslash (\), since it
looks a little like a lambda.

square xX = X*X
square' = \ x -> x*x -- Same

YVL Lambda function
-— Alternate definitions for addem
addem' =\ a b -> a+b
addem"'' =\ a -> \ b -> atb

addem''' a = \ b -> a+b

2025-02-24 CS 331 Spring 2025 12

Haskell: Functions
Defining Operators [1/3]

We can also define new infix binary operators. As with functions,
we write what looks like a call to the operator, an equals sign,
and then an expression.

Here is the definition of an operator (+5$+).

a +S+ b = 2*a + Db

Operator names can use any of the following 20 characters. They
must not begin with a colon (:); those are special names.

P # S % & *+ . /< =>720\"1 -~

2025-02-24 CS 331 Spring 2025 13

Haskell: Functions
Defining Operators [2/3]

We can optionally set an infix binary operator’s precedence and
associativity. (Default: precedence 9, left-associative.)

a +S+ b = 2*a + b

infixl 6 +$+ —-- Left-associative, precedence level 6
-— Use infixr for right associativity
slowfibo 6
Operators Precedence | Associativity
Function application 10 Left Haskell function application
is an invisible operator.
*/ 7 Left
+ - 6 Left
: ++ is list
P > Right concatentation.
== /= < <= > >= 4 None /= is inequality.
& & 3 Right
| | 2 Right
2025-02-24 CS 331 Spring 2025 14

Haskell: Functions
Defining Operators [3/3]

We can use a regular function as an infix binary operator by
surrounding its name with backquotes ().

2 ~addem” 3

And we can use an infix binary operator as a regular function by
placing its name in parentheses.

(+S+) 5 7

2025-02-24 CS 331 Spring 2025

15

Haskell: Functions
Currying [1/2]

Think of a function as eating its arguments.

To simulate a multiple-argument function, write a function that
eats one argument, then returns a function that eats the rest.

Except that second function really only eats one (the second
original argument) and returns a function that eats the rest. Etc.

The last function eats the last argument. Its return value is the
final return value—which might not be a function.

This is currying, after Haskell Curry: simulating a multiple-
argument function using a single- argument function that

returns a function. .
For an example of currying

in C++, see curry.cpp.

2025-02-24 CS 331 Spring 2025 16

Haskell: Functions
Currying [2/2]

Again, Haskell function application is an invisible operator. It is
high-precedence and left-associative [f a bis (f a) b].

So multiple-argument functions in Haskell are curried. (Right?)

For example, our function addem really takes one argument. It
returns a function that adds that argument to something. The
following are the same, because of left associativity:

addem 2 3 —-— Returns 5
(addem 2) 3 —-- Returns 5

The intermediate function is not merely theoretical. For example,

we can store it in a variable.
I imagine that the existence of
currying is the reason the Haskell
addz = addem 2 PL was not named “Curry”; the

add? 3 —— Returns 5 term was already used.

2025-02-24 CS 331 Spring 2025

17

2025-02-24

Haskell: Lists

CS 331 Spring 2025

18

Haskell: Lists
Lists & Tuples [1/5]

A statically typed programming language will typically support two
categories of collections of multiple items:

= Collections containing a varying number of items, all of the same
type. Examples: C++ vector, list, deque; Java Arraylist,
ArrayDeque.

= Collections containing a fixed number of items, possibly of different
types. Examples: C++ tuple, struct; Java tuple types.

Haskell supports the above two categories as well, in the form of
lists and tuples, respectively.

For code from this topic,
see list.hs.

2025-02-24 CS 331 Spring 2025 19

Haskell: Lists
Lists & Tuples [2/5]

A Haskell list holds an arbitrary number of data items, all of the
same type. A list literal uses brackets and commas.

[] -— Empty list

(2, 5, 3] —— List of three Integer values
["hello", "there"] -- List of two String values
(111, [1, [1,2,3,4]] —— List of lists of Integer

(1, [2, 3]] —-— ERROR; types differ

Thanks to lazy evaluation, Haskell lists can be infinite.

(1, 3 ..] —-- List of ALL nonnegative odd Integers

2025-02-24 CS 331 Spring 2025

20

Haskell: Lists
Lists & Tuples [3/5]

The type of a list is written as the item type in brackets.

> :t [True, False]
[True, False] :: [Bool]

Lists with different lengths can have the same type.

> :t [False, True, True, True, True, False]

[False, True, True, True, True, False] :: [Bool]

2025-02-24 CS 331 Spring 2025

21

Haskell: Lists
Lists & Tuples [4/5]

When looking at lists—particularly infinite lists—a useful function is
take. This takes a nonnegative integer count and a list. It
returns a list containing the first count items of the given list.

> [1, 3 ..]

(1,3,5,7,9,11,13,15,17,19,21,23, .. goes on and on ...
> take o6 [1, 3 ..]

(1,3,5,7,9,11]

If the given list has fewer than count items, then the same list is
returned.

> take 100 [5, 4, 3]
[5,4,3]

2025-02-24 CS 331 Spring 2025 22

Haskell: Lists
Lists & Tuples [5/5]

A Haskell tuple holds a fixed nhumber of data items, possibly of
different types. A tuple literal uses parenthesis and commas.

(2.1, 1.2, "hello", True) —— Tuple: Double, Double,
-—- String, Bool

Haskell tuples cannot be infinite.

The type of a tuple is written as if it were a tuple of types.

> :t (2.1, True)
(2.1, True) :: (Double, Bool)

Tuples with different numbers of items always have different types.

2025-02-24 CS 331 Spring 2025 23

Haskell: Lists
List Primitives [1/2]

A primitive (operation) is a fundamental operation | This terminology

that other operations are constructed from. Is nol_tiasspkeecliﬁc to

Haskell has three list primitives.
1. Construct an empty list.

2. Cons: construct a list given its first item and a list of other items.
Uses the infix colon (:) operator.

[5, 2, 1, 8]

5:12, 1, 8] —— Same as above

5:2:1:8:[] -— Also the same; ":" 1s right-associative
Continued ...

2025-02-24 CS 331 Spring 2025 24

Haskell: Lists
List Primitives [2/2]

Three Haskell list primitives, continued

Parentheses are required
due to the high precedence
of function application.

—-— Value of ff for an empty list

3. Pattern matching for lists.

= 4 —-- Value of ff for a nonempty list
A common convention: read “x:xs” as “x and some xs (plural)”.

Pattern matching can be done using [..., ...] as well.

gg [a] = 17 -—- Value of gg for any l-item list
gg [a, b, c] =19 -- Value of gg for any 3-1tem list

2025-02-24 CS 331 Spring 2025

Haskell: Lists
Other List Syntax — Strings

A Haskell string is a list of characters (Char values). A char literal
uses single quotes.

I:'a', 'b', 'C':I

"abc" —-- Same as above

The tutorial presented ++ as the string concatenation operator. It
is, but, more generally, it is the /ist concatenation operator.

> "abc" ++ "def"
"abcdef"

> [1,2,3] ++ [4,5,6]
(1,2,3,4,5,6]

2025-02-24 CS 331 Spring 2025 26

Haskell: Lists
Other List Syntax — Ranges

Use ™. ."” to construct a list holding a range of values.
There are exactly four ways to do this.

[1..10] --— Same as [1, 2, 3, 4, 5, o, 7, 8, 9, 10]
[1,3..10] -- Same as [1, 3, 5, 7,]

[1..] -—- Infinite list: [1, 2, 3, 4, 5, 6, 7, 8, ..]
[1,3..] -- Infinite list: [1, 3, 5, 7, 9, 11, ..]

These four are wrappers around overloaded functions enumFromTo,
enumFromThenTo, enumFrom, and enumFromThen, respectively.

[1,3..10]
enumFromThenTo 1 3 10 —-- Same as above

2025-02-24 CS 331 Spring 2025 27

Haskell: Lists
Other List Syntax — List Comprehensions [1/2]

You have probably seen the mathematical notation known as a set
comprehension (or set-builder notation). Here is an example.

{xy|xe{3,2,1yand y € {10, 11, 12} }

The above is read as, "The set of all xy for x in the set {1, 2, 3}
and y in the set {10, 11, 12}.”

A number of PLs, including Haskell, have a construct based on this
idea: the list comprehension. Here is a Haskell example.

[x*y | x <= [3, 2, 11, y <= [10, 11, 12]]

This deals with Haskell lists instead of sets, but is otherwise very
similar to the above set comprehension.

2025-02-24 CS 331 Spring 2025 28

Haskell: Lists
Other List Syntax — List Comprehensions [2/2]

A list comprehension consists of brackets enclosing the following:

= An expression.
= Then a vertical bar ().

= Then a comma-separated list of two kinds of things:
= var <- LIST

= Expression of type Bool

Examples

Similar to

[x*x | x <= [1..6]] nested for-loops.

>
[1,4,9,16,25,36] kj
> [x*v | x <= [3, 2, 1], vy <- [10, 11, 12] 1

[30,33,36,20,22,24,10,11,12]
> [x | x <= [1..20], x mod 2 == 1]
(1,3,5,7,9,11,13,15,17,19]

2025-02-24 CS 331 Spring 2025

29

Haskell: Lists
Lists & Recursion [1/4]

In a function that takes a list, it is common to have two cases:
= The empty list: [].
= Nonempty lists. A pattern like b:bs matches any nonempty list.

TO DO
= Write a function isEmpty that determines whether a list is empty.

Done. See 1ist.hs.

A function taking a list will often be recursive, with the base case
handling an empty list, while the recursive case handles a
nonempty list. This typically does a computation with the head
(b above) and makes a recursive call on the tail (bs above).

TO DO
= Write a function 1istLength that returns the length of a list.

Done. See 1ist.hs.

2025-02-24 CS 331 Spring 2025 30

Haskell: Lists
Lists & Recursion [2/4]

Prelude function map applies a function to each item of a list.

> square X = X*X
> square S map can always be replaced
25 by a list comprehension.

See the first example two
> map square [2,5,10,7,1] slides back.

[4,25,100,49,1]

«—— Because of currying, we can also

> squarelList = map square think of map as a higher-order

> squarelist [2,5,10,7,1] function. It takes a function that

is given a single item and returns
[4,25,100,49, 1] a function that is given a list.
TO DO

= Write a function myMap that does the same thing as map.

Done. See 1ist.hs.

2025-02-24 CS 331 Spring 2025 31

Haskell: Lists
Lists & Recursion [3/4]

Prelude function filter takes a predicate and a list. It returns a

list of items that pass the test. A predicate is a function that

returns a Boolean. We can

> isBig x = x >= 6 think of it as performing a

, , pass/fail test. (This terminology
> 1sB1g 5 is not specific to Haskell.)
False
> filter isBig [2,5,10,1,7] filter can always be

replaced by a list
comprehension. See the third
example three slides back.

(10, 7]

TO DO
= Write a function myFilter that does the same thing as filter.

Done. See 1ist.hs.

Useful: if COND then EXPR1 else EXPRZ2.

= COND is an expression of type Bool. If it is True, then EXPR1 is
returned. If it is False, then EXPRZ2 is returned.

= Expressions EXPR1 and EXPR2 must have the same type.

2025-02-24 CS 331 Spring 2025

Haskell: Lists
Lists & Recursion [4/4]

Sometimes other kinds of recursion are used.

TO DO

= Write a function lookInd that does item lookup by index (zero-

based) in a list. Done. See 1ist.hs.

Useful

= The pattern ™ " matches any single entity but cannot be used in the
right-hand side of a definition. So it means unused value.

= error iS an overloaded function that takes a string and returns
any type at all. When it executes, it crashes, printing an error
message, which will include the given string.

= undefined is like error, but it takes no arguments.

2025-02-24 CS 331 Spring 2025 33

	Slide 1: Haskell: Functions Haskell: Lists
	Slide 2: Unit Overview The Haskell Programming Language
	Slide 3
	Slide 4: Review PL Category: Functional PLs
	Slide 5: Review Introduction to Haskell — Characteristics: Syntax, Type System
	Slide 6: Review Introduction to Haskell — Characteristics: Flow, Evaluation
	Slide 7
	Slide 8: Haskell: Functions Basic Syntax [1/4]
	Slide 9: Haskell: Functions Basic Syntax [2/4]
	Slide 10: Haskell: Functions Basic Syntax [3/4]
	Slide 11: Haskell: Functions Basic Syntax [4/4]
	Slide 12: Haskell: Functions Lambda Functions
	Slide 13: Haskell: Functions Defining Operators [1/3]
	Slide 14: Haskell: Functions Defining Operators [2/3]
	Slide 15: Haskell: Functions Defining Operators [3/3]
	Slide 16: Haskell: Functions Currying [1/2]
	Slide 17: Haskell: Functions Currying [2/2]
	Slide 18
	Slide 19: Haskell: Lists Lists & Tuples [1/5]
	Slide 20: Haskell: Lists Lists & Tuples [2/5]
	Slide 21: Haskell: Lists Lists & Tuples [3/5]
	Slide 22: Haskell: Lists Lists & Tuples [4/5]
	Slide 23: Haskell: Lists Lists & Tuples [5/5]
	Slide 24: Haskell: Lists List Primitives [1/2]
	Slide 25: Haskell: Lists List Primitives [2/2]
	Slide 26: Haskell: Lists Other List Syntax — Strings
	Slide 27: Haskell: Lists Other List Syntax — Ranges
	Slide 28: Haskell: Lists Other List Syntax — List Comprehensions [1/2]
	Slide 29: Haskell: Lists Other List Syntax — List Comprehensions [2/2]
	Slide 30: Haskell: Lists Lists & Recursion [1/4]
	Slide 31: Haskell: Lists Lists & Recursion [2/4]
	Slide 32: Haskell: Lists Lists & Recursion [3/4]
	Slide 33: Haskell: Lists Lists & Recursion [4/4]

