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Unit Overview
The Haskell Programming Language

Topics

v'= PL feature: type system
v'= PL category: functional PLs
v'= Introduction to Haskell

= Haskell: functions

= Haskell: lists

= Haskell: flow of control

= Haskell: I/O

= Haskell: data
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Review
PL Category: Functional PLs

A typical functional programming language has the following
characteristics.

= It has first-class functions.

= It offers good support for higher-order functions*.
= It offers good support for recursion.
= It has a preference for immutable** data.

A pure functional PL goes further, and does not support mutable
data at all. There are no side effects*** in a pure functional PL.

*A higher-order function is a function that acts on functions.

**A value is mutable if it can be changed. Otherwise, it is
immutable—like const values in C++.

***Code has a side effect when it makes a change, other than
returning a value, that is visible outside the code.
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Review
Introduction to Haskell — Characteristics: Syntax, Type System

Haskell is a pure functional PL.

Haskell has significant indentation. Indenting is the usual way
to indicate the start & end of a block.

Haskell has a sound static type system with sophisticated type
inference. So typing is largely implicit; however, we are allowed
to write type annotations, if we wish.

Optional type annotation.

square :: Integer -> Integer <€<—— If this annotation were not
present, then we could
square n = n*n pass fractional values to

function square.

Haskell’s type system is extensible. We can create new types, but
we do not use object-oriented constructions to do so.
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Review
Introduction to Haskell — Characteristics: Flow, Evaluation

Haskell has no loops! Instead of iteration, Haskell uses recursion.

However, we often do not make recursive calls explicitly. Instead,
we use functions that encapsulate recursive execution.

¥ Encapsulated loop-like
> map square [1, 3, 5, 8] construction.

[1,9,25,064]

By default Haskell does lazy evaluation: expressions are not
evaluated until they need to be.
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Haskell: Functions
Basic Syntax [1/4]

Comments
= Single line. Two dashes to end of line: -- ... (like Lua)
= Multi-line. Begin with brace-dash, end with dash-brace: {- ... -}

Identifiers begin with a letter or underscore, and contain only
letters, underscores, digits, and single quotes (').

There are two kinds of identifiers (terminology below is mine):
= Normal identifiers begin with a lower-case letter or underscore.
These name variables—including functions.

= Special identifiers begin with an UPPER-CASE letter. These name
modules, types, and constructors. This is not merely a convention!

myVariable —— Normal
~my Function' 33 -- Normal
MyModule -— Special For code from this topic,

see func.hs.
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Haskell: Functions
Basic Syntax [2/4]

To define a function, write what looks like a call to the function, an
equals sign, and then an expression.

addem a b = a+b

yd This represents
> addem 2 3 the GHCi prompt.

5

Parentheses may be used around individual arguments, to override
precedence & associativity.

addem 18 (5*7)
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Haskell: Functions
Basic Syntax [3/4]

Function definitions use pattern matching. Define a function
differently for different patterns. The first matching pattern is
the one used.

Here is a Fibonacci function using the slow method.
— Patterns

slowfibo|O|= 0
slowfibol|l]|= 1
slowfibol|n|= slowfibo (n-1) + slowfibo (n-2)

N/

We need parentheses here, because
function application has high precedence.
So “fibo n-1" would be the same as
“(fibo n) - 1"
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Haskell: Functions
Basic Syntax [4/4]

Use where to introduce a block (indent!) of local definitions.

plus minus times a b c d
a + b

a plus b

c minus d C d

a plus b * ¢ minus d where

We need parentheses here because

function application is left-associative.

So “twice factorial n” would be

n

the same as " (twice factorial) n".

Local-definition blocks can be nested. /

twiceFactorial n = twice
twice k = two*k where
two = 2
factorial 0 =1

factorial curr

prev curr-1

2025-02-24

(factorial n)

curr * factorial prev

where

where

The tutorial mentioned 1let ... in, which
puts local definitions before the main code.
The where construction puts them after it.
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Haskell: Functions
Lambda Functions

A lambda function is a kind of expression The name comes from the
whose value is a function. In other words, lambda calculus, a
TR . . mathematical system in
it is a function with no name. which an unnamed function

is introduced using the
Greek letter lambda (A).

Haskell introduces a lambda function with a backslash (\), since it
looks a little like a lambda.

square xX = X*X
square' = \ x -> x*x -- Same

YVL Lambda function
-— Alternate definitions for addem
addem' =\ a b -> a+b
addem"'' =\ a -> \ b -> atb

addem''' a = \ b -> a+b
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Haskell: Functions
Defining Operators [1/3]

We can also define new infix binary operators. As with functions,
we write what looks like a call to the operator, an equals sign,
and then an expression.

Here is the definition of an operator (+5$+).

a +S+ b = 2*a + Db

Operator names can use any of the following 20 characters. They
must not begin with a colon (:); those are special names.

P # S % & *+ . /< =>720\"1 -~
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Haskell: Functions
Defining Operators [2/3]

We can optionally set an infix binary operator’s precedence and
associativity. (Default: precedence 9, left-associative.)

a +S+ b = 2*a + b

infixl 6 +$+ —-- Left-associative, precedence level 6
-— Use infixr for right associativity
slowfibo 6
Operators Precedence | Associativity
Function application 10 Left Haskell function application
is an invisible operator.
*/ 7 Left
+ - 6 Left
: ++ is list
P > Right concatentation.
== /= < <= > >= 4 None /= is inequality.
& & 3 Right
| | 2 Right
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Haskell: Functions
Defining Operators [3/3]

We can use a regular function as an infix binary operator by
surrounding its name with backquotes ().

2 ~addem” 3

And we can use an infix binary operator as a regular function by
placing its name in parentheses.

(+S+) 5 7
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Haskell: Functions
Currying [1/2]

Think of a function as eating its arguments.

To simulate a multiple-argument function, write a function that
eats one argument, then returns a function that eats the rest.

Except that second function really only eats one (the second
original argument) and returns a function that eats the rest. Etc.

The last function eats the last argument. Its return value is the
final return value—which might not be a function.

This is currying, after Haskell Curry: simulating a multiple-
argument function using a single- argument function that

returns a function. .
For an example of currying

in C++, see curry.cpp.

2025-02-24 CS 331 Spring 2025 16



Haskell: Functions
Currying [2/2]

Again, Haskell function application is an invisible operator. It is
high-precedence and left-associative [f a bis (f a) b].

So multiple-argument functions in Haskell are curried. (Right?)

For example, our function addem really takes one argument. It
returns a function that adds that argument to something. The
following are the same, because of left associativity:

addem 2 3 —-— Returns 5
(addem 2) 3 —-- Returns 5

The intermediate function is not merely theoretical. For example,

we can store it in a variable.
I imagine that the existence of
currying is the reason the Haskell
addz = addem 2 PL was not named “Curry”; the

add? 3 —— Returns 5 term was already used.
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Haskell: Lists
Lists & Tuples [1/5]

A statically typed programming language will typically support two
categories of collections of multiple items:

= Collections containing a varying number of items, all of the same
type. Examples: C++ vector, list, deque; Java Arraylist,
ArrayDeque.

= Collections containing a fixed number of items, possibly of different
types. Examples: C++ tuple, struct; Java tuple types.

Haskell supports the above two categories as well, in the form of
lists and tuples, respectively.

For code from this topic,
see list.hs.
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Haskell: Lists
Lists & Tuples [2/5]

A Haskell list holds an arbitrary number of data items, all of the
same type. A list literal uses brackets and commas.

[ ] -— Empty list

(2, 5, 3] —— List of three Integer values
["hello", "there"] -- List of two String values
(111, [1, [1,2,3,4]] —— List of lists of Integer

(1, [2, 3]] —-— ERROR; types differ

Thanks to lazy evaluation, Haskell lists can be infinite.

(1, 3 ..] —-- List of ALL nonnegative odd Integers
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Haskell: Lists
Lists & Tuples [3/5]

The type of a list is written as the item type in brackets.

> :t [True, False]
[True, False] :: [Bool]

Lists with different lengths can have the same type.

> :t [False, True, True, True, True, False]

[False, True, True, True, True, False] :: [Bool]

2025-02-24 CS 331 Spring 2025

21



Haskell: Lists
Lists & Tuples [4/5]

When looking at lists—particularly infinite lists—a useful function is
take. This takes a nonnegative integer count and a list. It
returns a list containing the first count items of the given list.

> [1, 3 ..]

(1,3,5,7,9,11,13,15,17,19,21,23, .. goes on and on ...
> take o6 [1, 3 ..]

(1,3,5,7,9,11]

If the given list has fewer than count items, then the same list is
returned.

> take 100 [5, 4, 3]
[5,4,3]
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Haskell: Lists
Lists & Tuples [5/5]

A Haskell tuple holds a fixed nhumber of data items, possibly of
different types. A tuple literal uses parenthesis and commas.

(2.1, 1.2, "hello", True) —— Tuple: Double, Double,
-—- String, Bool

Haskell tuples cannot be infinite.

The type of a tuple is written as if it were a tuple of types.

> :t (2.1, True)
(2.1, True) :: (Double, Bool)

Tuples with different numbers of items always have different types.
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Haskell: Lists
List Primitives [1/2]

A primitive (operation) is a fundamental operation | This terminology

that other operations are constructed from. Is nol_tiasspkeecliﬁc to

Haskell has three list primitives.
1. Construct an empty list.

2. Cons: construct a list given its first item and a list of other items.
Uses the infix colon (:) operator.

[5, 2, 1, 8]

5:12, 1, 8] —— Same as above

5:2:1:8:[] -— Also the same; ":" 1s right-associative
Continued ...
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Haskell: Lists
List Primitives [2/2]

Three Haskell list primitives, continued

Parentheses are required
due to the high precedence
of function application.

—-— Value of ff for an empty list

3. Pattern matching for lists.

= 4 —-- Value of ff for a nonempty list
A common convention: read “x:xs” as “x and some xs (plural)”.

Pattern matching can be done using [..., ...] as well.

gg [a] = 17 -—- Value of gg for any l-item list
gg [a, b, c] =19 -- Value of gg for any 3-1tem list

2025-02-24 CS 331 Spring 2025



Haskell: Lists
Other List Syntax — Strings

A Haskell string is a list of characters (Char values). A char literal
uses single quotes.

I:'a', 'b', 'C':I

"abc" —-- Same as above

The tutorial presented ++ as the string concatenation operator. It
is, but, more generally, it is the /ist concatenation operator.

> "abc" ++ "def"
"abcdef"

> [1,2,3] ++ [4,5,6]
(1,2,3,4,5,6]
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Haskell: Lists
Other List Syntax — Ranges

Use ™. ."” to construct a list holding a range of values.
There are exactly four ways to do this.

[1..10] --— Same as [1, 2, 3, 4, 5, o, 7, 8, 9, 10]
[1,3..10] -- Same as [1, 3, 5, 7, ]

[1..] -—- Infinite list: [1, 2, 3, 4, 5, 6, 7, 8, ..]
[1,3..] -- Infinite list: [1, 3, 5, 7, 9, 11, ..]

These four are wrappers around overloaded functions enumFromTo,
enumFromThenTo, enumFrom, and enumFromThen, respectively.

[1,3..10]
enumFromThenTo 1 3 10 —-- Same as above
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Haskell: Lists
Other List Syntax — List Comprehensions [1/2]

You have probably seen the mathematical notation known as a set
comprehension (or set-builder notation). Here is an example.

{xy|xe{3,2,1yand y € {10, 11, 12} }

The above is read as, "The set of all xy for x in the set {1, 2, 3}
and y in the set {10, 11, 12}.”

A number of PLs, including Haskell, have a construct based on this
idea: the list comprehension. Here is a Haskell example.

[ x*y | x <= [3, 2, 11, y <= [10, 11, 12] ]

This deals with Haskell lists instead of sets, but is otherwise very
similar to the above set comprehension.
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Haskell: Lists
Other List Syntax — List Comprehensions [2/2]

A list comprehension consists of brackets enclosing the following:

= An expression.
= Then a vertical bar ().

= Then a comma-separated list of two kinds of things:
= var <- LIST

= Expression of type Bool

Examples

Similar to

[ x*x | x <= [1..6] ] nested for-loops.

>
[1,4,9,16,25,36] kj
> [ x*v | x <= [3, 2, 1], vy <- [10, 11, 12] 1

[30,33,36,20,22,24,10,11,12]
> [ x | x <= [1..20], x mod 2 == 1]
(1,3,5,7,9,11,13,15,17,19]

2025-02-24 CS 331 Spring 2025
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Haskell: Lists
Lists & Recursion [1/4]

In a function that takes a list, it is common to have two cases:
= The empty list: [].
= Nonempty lists. A pattern like b:bs matches any nonempty list.

TO DO
= Write a function isEmpty that determines whether a list is empty.

Done. See 1ist.hs.

A function taking a list will often be recursive, with the base case
handling an empty list, while the recursive case handles a
nonempty list. This typically does a computation with the head
(b above) and makes a recursive call on the tail (bs above).

TO DO
= Write a function 1istLength that returns the length of a list.

Done. See 1ist.hs.
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Haskell: Lists
Lists & Recursion [2/4]

Prelude function map applies a function to each item of a list.

> square X = X*X
> square S map can always be replaced
25 by a list comprehension.

See the first example two
> map square [2,5,10,7,1] slides back.

[4,25,100,49,1]

«—— Because of currying, we can also

> squarelList = map square think of map as a higher-order

> squarelist [2,5,10,7,1] function. It takes a function that

is given a single item and returns
[4,25,100,49, 1] a function that is given a list.
TO DO

= Write a function myMap that does the same thing as map.

Done. See 1ist.hs.
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Haskell: Lists
Lists & Recursion [3/4]

Prelude function filter takes a predicate and a list. It returns a

list of items that pass the test. A predicate is a function that

returns a Boolean. We can

> isBig x = x >= 6 think of it as performing a

, , pass/fail test. (This terminology
> 1sB1g 5 is not specific to Haskell.)
False
> filter isBig [2,5,10,1,7] filter can always be

replaced by a list
comprehension. See the third
example three slides back.

(10, 7]

TO DO
= Write a function myFilter that does the same thing as filter.

Done. See 1ist.hs.

Useful: if COND then EXPR1 else EXPRZ2.

= COND is an expression of type Bool. If it is True, then EXPR1 is
returned. If it is False, then EXPRZ2 is returned.

= Expressions EXPR1 and EXPR2 must have the same type.
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Haskell: Lists
Lists & Recursion [4/4]

Sometimes other kinds of recursion are used.

TO DO

= Write a function lookInd that does item lookup by index (zero-

based) in a list. Done. See 1ist.hs.

Useful

= The pattern ™ " matches any single entity but cannot be used in the
right-hand side of a definition. So it means unused value.

= error iS an overloaded function that takes a string and returns
any type at all. When it executes, it crashes, printing an error
message, which will include the given string.

= undefined is like error, but it takes no arguments.
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