
PL Category: Functional PLs
Introduction to Haskell

CS 331 Programming Languages

Lecture Slides

Friday, February 21, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

2025-02-21 CS 331 Spring 2025

Unit Overview
Lexing & Parsing

Topics

▪ Introduction to lexing & parsing

▪ The basics of lexical analysis

▪ State-machine lexing

▪ The basics of syntax analysis

▪ Recursive-descent parsing

▪ Shift-reduce parsing

▪ Parsing wrap-up

Lexical Analysis (Lexing)

Syntax Analysis (Parsing)

2

Review

2025-02-21 CS 331 Spring 2025 3

Review
Introduction to Lexing & Parsing

Two steps:

▪ Lexical analysis (lexing)

▪ Syntax analysis (parsing)

The output of a parser is typically an abstract syntax tree (AST).
Specifications of these vary.

2025-02-21 CS 331 Spring 2025

Parser
Lexeme
Stream

AST or
Error

Lexer
Character

Stream

return (*dp + 2.6); //x returnStmt

id: dp

return (*dp + 2.6); //x

binOp: +

unOp: * numLit: 2.6

key

punct

id op num
lit

op

punct

4

Review
Parsing Wrap-Up — Efficiency of Parsing

To analyzing lexers & parsers, we can:

▪ Consider the input size (n) to be the number of characters, OR

▪ Consider the input size to be the number of lexemes, and count
lexeme operations (read, copy, compare) as basic operations.

In either case:

 Practical lexers and parsers run in linear time.

This includes State-Machine lexers, Predictive Recursive-Descent
parsers, Shift-Reduce parsers, and others used in practice.

A practical method is generally only able to handle a restricted
class of CFLs. Various parsing methods are known that can
handle all CFLs; these mostly have a worst case of Θ(n3).

2025-02-21 CS 331 Spring 2025 5

Review
Parsing Wrap-Up — Parsing in Practice [1/2]

In recent years, the world of parsing has been branching out, with
methods that previously saw little use gaining traction.

In particular, a Generalized LR (GLR) parser runs something like
a Shift-Reduce automaton. Roughly speaking, it allows multiple
actions for a single state-input combination, and tries them all.

GLR can handle all CFLs. It is cubic-time for many grammars.
However:

▪ it runs faster for some grammars, and

▪ it easily handles some situations that are difficult for other methods.

For these reasons GLR is seeing increasing use.

2025-02-21 CS 331 Spring 2025 6

Review
Parsing Wrap-Up — Parsing in Practice [2/2]

The lexing & parsing methods we have covered are all appropriate
for use in production code—but Lua is generally not the best PL
to write them in.

It appears to me that production parsers today are mostly either
Recursive-Descent parsers or automatically generated bottom-
up parsers (LALR, GLR).

Producing a parser is a very practical skill, because:

 Parsing is making sense of input.

And that is something that computer programs need to do a lot.

Knowing how to produce a parser can be a useful addition to your
personal toolbox.

2025-02-21 CS 331 Spring 2025 7

2025-02-21 CS 331 Spring 2025

Unit Overview
The Haskell Programming Language

Topics

▪ PL feature: type system

▪ PL category: functional PLs

▪ Introduction to Haskell

▪ Haskell: functions

▪ Haskell: lists

▪ Haskell: flow of control

▪ Haskell: I/O

▪ Haskell: data

8

Review
PL Feature: Type System [1/2]

The following type-related terms will be particularly important in
the upcoming material.

▪ Type

▪ Static typing

▪ Manifest typing vs. implicit typing

▪ Type annotation

▪ Type inference

▪ First-class functions

▪ Sound type system

See A Primer on Type Systems for full information on this topic.

2025-02-21 CS 331 Spring 2025 9

Review
PL Feature: Type System [2/2]

A PL or PL construct is type-safe if it forbids operations that are
incorrect for the types on which they operate.

Two unfortunate terms are often used in discussions of type
safety: strong typing (or strongly typed) and weak typing
(or weakly typed). But these terms have no standard
definitions. They are used in different ways by different people.

Therefore:

 Avoid using the terms “strong” and “weak” typing, or
“strongly typed” and “weakly typed”.

2025-02-21 CS 331 Spring 2025 10

PL Category: Functional PLs

2025-02-21 CS 331 Spring 2025 11

PL Category: Functional PLs
Background [1/5]

For most of us, our programming experience has largely involved
imperative programming: writing code to tell a computer
what to do. Running a program is thus saying to a computer,
“Follow these instructions.”

This is the predominant paradigm in PLs like Java, C++, and Lua.

An alternative is declarative programming: writing code to tell a
computer what is true. Running a program might be thought of
in terms of asking a question.

The most common declarative programming style is functional
programming.

Later in the semester, we will look at logic programming,
another declarative style.

2025-02-21 CS 331 Spring 2025 12

PL Category: Functional PLs
Background [2/5]

A function (or other code) has a side effect when it makes a
change, other than returning a value, that is visible outside the
function (or other code).

In C++, adding ints has no side effect.

int aa, bb;

int n = aa + bb; // operator+ has no side effect

On the other hand, the += operator does have a side effect.

n += bb; // operator+= side effect: changing n

Why are we talking about side effects? See the next slide.

2025-02-21 CS 331 Spring 2025

When we talk about a side
effect, we are not suggesting

that the change made is
accidental or undesirable.

13

PL Category: Functional PLs
Background [3/5]

Functional programming (FP) is a programming style that
generally has the following characteristics.

▪ Side effects are avoided. Once a variable is set, its value is
generally not changed. A function’s only job is to return a value.

▪ Computation is considered primarily in terms of the evaluation of
functions—as opposed to execution of tasks.

▪ Functions are of primary interest. Rather than mere repositories for
code, functions are values to be constructed and manipulated.

2025-02-21 CS 331 Spring 2025 14

PL Category: Functional PLs
Background [4/5]

One can do functional programming, in some sense, in just about
any PL. However, some PLs support it better than others.

A functional programming language is a PL designed to
support FP well. This is thus a somewhat vague term.

▪ No one calls C a functional PL.

▪ Opinions vary about JavaScript.

▪ Everyone agrees that Haskell is a functional PL.

PLs generally agreed to be functional PLs include Haskell, the ML
family (ML, OCaml, F#), R, and Miranda.

In addition, the Lisp family of PLs (Common Lisp, Emacs Lisp,
Scheme, Clojure, Racket, Logo, Arc) offers excellent support for
FP, but is often considered as a separate category.

2025-02-21 CS 331 Spring 2025 15

PL Category: Functional PLs
Background [5/5]

Functional programming and functional PLs have been around for
many decades, but they remained largely the province of
academia until two things happened.

▪ In the 1990s a solution was found to the problem of how to do
interactive I/O in a context where side effects were not allowed.

▪ Around 2000, serious attention started to be given to the practical
issues of algorithmic efficiency and resource usage in a functional
context.

In recent decades, FP has become increasingly mainstream.
Functional PLs are now being used for large projects.

Furthermore, constructs inspired by FP are being introduced into
many PLs. For example, lambda functions became part of C++
in the 2011 Standard. And C++ got fold expressions in the 2017
Standard. (What are those? Look it up!).

2025-02-21 CS 331 Spring 2025 16

PL Category: Functional PLs
Typical Characteristics

A typical functional programming language has the following
characteristics.

▪ It has first-class functions.

▪ It offers good support for higher-order functions*.

▪ It offers good support for recursion.

▪ It has a preference for immutable** data.

A pure functional PL goes further, and does not support mutable
data at all. There are no side effects in a pure functional PL.

*A higher-order function is a function that acts on functions.

**A value is mutable if it can be changed. Otherwise, it is
immutable—like const values in C++.

2025-02-21 CS 331 Spring 2025 17

Introduction to Haskell

2025-02-21 CS 331 Spring 2025 18

Introduction to Haskell
History [1/3]

In the mid-20th century, any number of functional PLs were
created, often as part of academic research projects in computer
science or mathematics. Most saw very little use. None saw
widespread use in mainstream programming.

In 1987, members of the FP community met at a conference in
Portland, Oregon. Feeling that their field was too fragmented,
they formed a committee to create a single pure functional PL
that could form a stable platform for research, development,
and the promotion of functional programming.

They named this programming language Haskell, after logician
Haskell B. Curry (1900–1982). (Why not “Curry”? Probably
because that was already used for something else, as we will
see.)

2025-02-21 CS 331 Spring 2025 19

Introduction to Haskell
History [2/3]

The initial release of Haskell came in 1990.

In the 1990s, the problem of how to do interactive I/O in a pure
functional context was solved, allowing Haskell and FP to enter
the programming mainstream.

Various language definitions in the 1990s culminated in a long-
term standard in 1998: Haskell 98.

The 1998 standard had two primary implementations:

▪ The Haskell User’s Gofer System (Hugs), a lightweight
interactive environment.

▪ The Glorious Glasgow Haskell Compilation System, a.k.a. the
Glasgow Haskell Compiler (GHC), a full-featured compiler.

Hugs was eventually folded into GHC. The interactive environment
was renamed GHCi.

2025-02-21 CS 331 Spring 2025 20

Introduction to Haskell
History [3/3]

A second Haskell standard was released in 2010: Haskell 2010,
a.k.a. Haskell Prime. This is the most recent published
standard.

Efforts to produce a third official standard have stalled. In practice,
Haskell is now defined by its primary implementation: GHC. This
supports Haskell Prime. It also includes optional language
extensions—well over 100 of them.

Haskell is now a robust, well supported PL, suitable for large
projects. However, because of its unusual nature, it still meets
resistance from traditionally minded programmers.

2025-02-21 CS 331 Spring 2025 21

Introduction to Haskell
Characteristics — Overall + Syntax [1/2]

Haskell is a pure functional PL. It has first-class functions and
excellent support for higher-order functions.

Haskell has a simple syntax, with less punctuation than C++, and
even less than Lua.

Below are more or less equivalent function calls in C++, Lua, and
Haskell.

foo(a, b, c); // C++

foo(a, b, c) -- Lua

foo a b c -- Haskell

2025-02-21 CS 331 Spring 2025 22

Introduction to Haskell
Characteristics — Overall + Syntax [2/2]

Haskell has significant indentation. Indenting is the usual way
to indicate the start & end of a block.

Example: more or less equivalent functions in Lua and Haskell.

function gg(a) -- Lua

 local b = 42 -- Indented, but only for

 local c = 30 * b + 1 -- readability; the compiler

 return foo(a, b, c) -- ignores indentation.

end

gg a = foo a b c where -- Haskell

 b = 42

 c = 30 * b + 1 -- We MUST indent this line.

In Lua, the end of the block is marked with “end”.

In Haskell, it is marked by a return to the previous indentation level.

2025-02-21 CS 331 Spring 2025 23

Introduction to Haskell
Characteristics — Type System [1/5]

Haskell has a sound static type system with sophisticated type
inference (based on the Hindley-Milner type-inference
algorithm). So typing is largely implicit. However, we are
allowed to write type annotations, if we wish.

Haskell’s type-checking standards are difficult to place on the
nominal-structural axis.

Haskell has few implicit type conversions. Support for the definition
of new implicit type conversions lies somewhere between
minimal and nonexistent.

2025-02-21 CS 331 Spring 2025 24

Introduction to Haskell
Characteristics — Type System [2/5]

Like C++ and Java, Haskell does static typing of variables. Unlike
C++ and Java, Haskell includes sophisticated type inference, so
types usually do not need to be specified.

int n = 3; // C++

n = 3 -- Haskell

The above Haskell code is legal in Lua, too. However “n = 3” is an
executable statement in Lua, while in Haskell it is not. In Haskell
it is something true, not something that happens at runtime.

Furthermore, in Lua a variable does not have a type. Only values
have types; a variable is merely a reference to a value. But in
Haskell every variable has a type. When it is not specified, the
compiler can usually figure out this type. (Above, the type of n
actually depends on context; it will typically be Integer.)

2025-02-21 CS 331 Spring 2025 25

Introduction to Haskell
Characteristics — Type System [3/5]

Haskell still allows type annotations, if desired. We can say:

n :: Integer

n = 3

This lets us communicate our intentions to be compiler.

For example, this following is legal.

s = "abc"

But the following will not compile:

s :: Integer

s = "abc" -- Type error: "abc" is not of type Integer

2025-02-21 CS 331 Spring 2025 26

Introduction to Haskell
Characteristics — Type System [4/5]

Haskell type annotations let us restrict which types are allowed.

Below is a function with its natural type annotation. If this
annotation were omitted, the result would be the same.

blug :: (Eq a, Num a) => a -> a -> Bool

blug x y = (x == y+1)

The above says that blug is a function that takes two values of
type a, where a is any numeric type with the equality operator
defined. And blug returns a Boolean.

But if we want blug to take only Integer values, we can do this:

blug :: Integer -> Integer -> Bool

blug x y = (x == y+1)

2025-02-21 CS 331 Spring 2025 27

Introduction to Haskell
Characteristics — Type System [5/5]

Haskell’s type system is extensible. We can create new types. We
can also overload functions and operators to use them.

However, unlike many modern PLs, such extensibility is not
facilitated via constructs that support object-oriented
programming.

Arguably, Haskell has no need for OOP constructions. Problems
that are solved using OOP in some PLs can be solved by other
means in Haskell (closures, for example).

2025-02-21 CS 331 Spring 2025 28

Introduction to Haskell
Characteristics — Flow of Control [1/2]

Iteration is difficult without mutable data. And, indeed, Haskell has
no iterative flow-of-control constructs. To be perfectly clear:
Haskell has no loops!

Instead of iteration, Haskell uses recursion.

However, we often do not make recursive calls explicitly. Instead,
we use functions that encapsulate recursive execution. More on
this at another time.

When the recursion is tail recursion, it can be optimized using tail
call optimization (TCO): the last operation in a function is not
implemented via a function call, but rather as the equivalent of
a goto, never returning to the original function.

Haskell implementations are required to do TCO.

2025-02-21 CS 331 Spring 2025 29

Introduction to Haskell
Characteristics — Flow of Control [2/2]

Haskell does have an if … else construction, but it is often more
convenient to use pattern matching.

Example: a recursive factorial function in C++ and in Haskell.

int factorial(int n) // C++

{

 if (n == 0) return 1;

 return n * factorial(n-1);

}

factorial 0 = 1 -- Haskell

factorial n = n * factorial (n-1)

Patterns

2025-02-21 CS 331 Spring 2025 30

Introduction to Haskell
Characteristics — Evaluation [1/2]

By default Haskell does lazy evaluation: expressions are not
evaluated until they need to be.

In contrast, C++, Java, and Lua evaluate an expression as soon as
it is encountered during execution; this is eager evaluation.

Here are functions in Lua and Haskell.

function f(x, y)

 return x+1 -- y is not used

end

f x y = x+1 -- y is not used

We look at what eager vs. lazy evaluation means for these.

2025-02-21 CS 331 Spring 2025 31

Introduction to Haskell
Characteristics — Evaluation [2/2]

function f(x, y)

 return x+1 -- y is not used

end

Lua (eager). Do “f(g(1), g(2))”. Function g is called with 1.
Then g is called with 2. The return values are passed to f.

f x y = x+1 -- y is not used

Haskell (lazy). Do “f (g 1) (g 2)”. Function f is called; this uses
its first parameter (x), so g is called with argument 1, and its
return value becomes x. Then f adds 1 to this and returns the
result. The second call to g is never made.

If the return value of f is not used, then no calls to g are made!

Lazy evaluation has other interesting consequences, as we will see.

2025-02-21 CS 331 Spring 2025 32

Introduction to Haskell
Build & Execution [1/3]

The standard filename suffix for Haskell source files is “.hs”.

GHC is a Haskell compiler that usually generates native machine
code. On the command line, GHC is used much like g++, clang,
or any other command-line compiler.

> ghc myprog.hs -o myprog

If there are no errors, then an executable named myprog will be
created. Running that file will execute function main in module
Main (a module in Haskell is much like a module in Lua).

Of course, if you are using an IDE, then things are handled
differently. GHC is supported by plug-ins for various IDEs,
including Visual Studio, Xcode, and Eclipse.

2025-02-21 CS 331 Spring 2025 33

Introduction to Haskell
Build & Execution [2/3]

GHCi is an interactive environment that interprets Haskell code.
Such an environment is often called a Read-Eval-Print Loop
(REPL), a term originating with Lisp.

GHCi can load source files or evaluate entered Haskell expressions.
Haskell is compiled to a bytecode, which is interpreted.

After running GHCi, you are presented with a prompt. GHCi
commands begin with colon (:). Some important commands:

:l FILENAME.hs

 Load & compile the given source file. Afterward, calls to
functions in the file may be typed at the prompt.

:r

 Reload the last file loaded. Useful if you change a file.

Continued …

2025-02-21 CS 331 Spring 2025 34

Introduction to Haskell
Build & Execution [3/3]

Continuing with GHCi commands:

:t EXPRESSION

 Get the type of a Haskell expression. The expression can involve
variables and functions defined in a file that has been loaded.

:i IDENTIFIER

 Get information about the identifier: its type; precedence and
associativity if it is an operator; perhaps the file it is defined in.

To evaluate a Haskell expression, enter the expression.

To define a Haskell variable or function, enter the definition.

n = 5

2025-02-21 CS 331 Spring 2025

Older versions of GHCi
require “let” first:

let n = 5

35

Introduction to Haskell
Some Programming [1/2]

TO DO

▪ Try out the Haskell interactive environment.

▪ Write a hello-world program in Haskell and execute it in various
ways.

2025-02-21 CS 331 Spring 2025

Done. See hello.hs.

36

Introduction to Haskell
Some Programming [2/2]

Recall the Fibonacci numbers:

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, …

I have written a Haskell program that computes and prints
Fibonacci numbers: fibo.hs.

TO DO

▪ Run fibo.hs.

233 + 377 = 610

See fibo.hs.

2025-02-21 CS 331 Spring 2025 37

	Slide 1: PL Category: Functional PLs Introduction to Haskell
	Slide 2: Unit Overview Lexing & Parsing
	Slide 3
	Slide 4: Review Introduction to Lexing & Parsing
	Slide 5: Review Parsing Wrap-Up — Efficiency of Parsing
	Slide 6: Review Parsing Wrap-Up — Parsing in Practice [1/2]
	Slide 7: Review Parsing Wrap-Up — Parsing in Practice [2/2]
	Slide 8: Unit Overview The Haskell Programming Language
	Slide 9: Review PL Feature: Type System [1/2]
	Slide 10: Review PL Feature: Type System [2/2]
	Slide 11
	Slide 12: PL Category: Functional PLs Background [1/5]
	Slide 13: PL Category: Functional PLs Background [2/5]
	Slide 14: PL Category: Functional PLs Background [3/5]
	Slide 15: PL Category: Functional PLs Background [4/5]
	Slide 16: PL Category: Functional PLs Background [5/5]
	Slide 17: PL Category: Functional PLs Typical Characteristics
	Slide 18
	Slide 19: Introduction to Haskell History [1/3]
	Slide 20: Introduction to Haskell History [2/3]
	Slide 21: Introduction to Haskell History [3/3]
	Slide 22: Introduction to Haskell Characteristics — Overall + Syntax [1/2]
	Slide 23: Introduction to Haskell Characteristics — Overall + Syntax [2/2]
	Slide 24: Introduction to Haskell Characteristics — Type System [1/5]
	Slide 25: Introduction to Haskell Characteristics — Type System [2/5]
	Slide 26: Introduction to Haskell Characteristics — Type System [3/5]
	Slide 27: Introduction to Haskell Characteristics — Type System [4/5]
	Slide 28: Introduction to Haskell Characteristics — Type System [5/5]
	Slide 29: Introduction to Haskell Characteristics — Flow of Control [1/2]
	Slide 30: Introduction to Haskell Characteristics — Flow of Control [2/2]
	Slide 31: Introduction to Haskell Characteristics — Evaluation [1/2]
	Slide 32: Introduction to Haskell Characteristics — Evaluation [2/2]
	Slide 33: Introduction to Haskell Build & Execution [1/3]
	Slide 34: Introduction to Haskell Build & Execution [2/3]
	Slide 35: Introduction to Haskell Build & Execution [3/3]
	Slide 36: Introduction to Haskell Some Programming [1/2]
	Slide 37: Introduction to Haskell Some Programming [2/2]

