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Unit Overview
Lexing & Parsing

Topics

▪ Introduction to lexing & parsing

▪ The basics of lexical analysis

▪ State-machine lexing

▪ The basics of syntax analysis

▪ Recursive-descent parsing

▪ Shift-reduce parsing

▪ Parsing wrap-up




Lexical Analysis (Lexing)

Syntax Analysis (Parsing)








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Review
Introduction to Lexing & Parsing

Two steps:

▪ Lexical analysis (lexing)

▪ Syntax analysis (parsing)

The output of a parser is typically an abstract syntax tree (AST). 
Specifications of these vary.
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Review
The Basics of Syntax Analysis

Parsing methods can be divided into two broad categories:
top-down and bottom-up.

Top-Down Parsers

▪ Go through derivation top to bottom, expanding nonterminals.

▪ Sometimes hand-coded and sometimes automatically generated.

▪ Method we look at: Predictive Recursive Descent.

Bottom-Up Parsers

▪ Go through the derivation bottom to top, reducing substrings to 
nonterminals.

▪ Code is almost always automatically generated.

▪ Method we look at: Shift-Reduce.
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Review
Shift-Reduce Parsing [1/3]

Shift-Reduce parsing is a table-based bottom-up method.

Parser execution uses a state machine with
a stack, called a Shift-Reduce automaton.

Each stack item holds a symbol and a state.

Operation is specified by a parsing table in two parts—action 
table & goto table—constructed before execution.

At each time step a lookup in the action table is done. One of four 
operations will be specified.

▪ SHIFT. Shift the next input symbol onto the stack.

▪ REDUCE. Apply a production in reverse, reducing symbols on the 
stack to a single nonterminal. See the goto table for the new state.

▪ ACCEPT. Done, syntactically correct.

▪ ERROR. Done, syntax error.
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Review
Shift-Reduce Parsing [2/3]

If a Shift-Reduce parser does not do multi-symbol look-ahead 
(which is typical), then the grammars a correct parser can be 
based on are called the LR(1) grammars.

The natural grammar for expressions with left-associative binary 
operators is typically an LR(1) grammar. Unlike Predictive 
Recursive Descent, Shift-Reduce parsing has no problem with 
productions that involve left recursion, like the following.

expr → term

  | expr ( “+” | “-” ) term

2025-02-19 CS 331 Spring 2025 7



Review
Shift-Reduce Parsing [3/3]

A description of a parsing method includes both how the Shift-
Reduce parser works and how the parsing tables are generated.

Generating Shift-Reduce parsing tables in a straightforward way 
tends to result in large, impractical tables. Various ways of 
generating smaller tables are known, but these generally do not 
work for all LR(1) grammars.

Probably the most common way of generating smaller parsing 
tables involves a procedure for merging states [F. DeRemer 
1969]. The LR(1) grammars for which this gives correct results 
are the LALR(1) grammars (Look-Ahead LR(1) grammars).

The Yacc parser generator and its descendants (GNU Bison, etc.), 
generally default to generating parsing tables using this method.
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Parsing Wrap-Up
Efficiency of Parsing [1/5]

We have discussed parsing algorithms that can handle some, but 
not all, CFLs. We have not yet discussed their efficiency.

How can we analyze the running time of a parsing (or lexing) 
method?

Recall (from CS 311) that, when we analyze algorithms, we need 
to be clear on three things:

▪ How we measure the size of the input (usually denoted by n).

▪ What operations are allowed.

▪ What operations we count (the basic operations).
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Parsing Wrap-Up
Efficiency of Parsing [2/5]

One reasonable option:

▪ The size of the input (n) is the number of characters in it.

▪ Allowed operations are reading a single input character, along 
with any internal processing operations we want.

▪ Basic operations are reading a single input character, along with 
the usual C operators.

This approach works nicely when the input is a character stream: 
analyzing a lexer, a parser in which lexing is not a separate 
step, or a lexer & parser considered together.

For a parser considered in isolation, with the lexer being separate, 
we can let n be the number of lexemes in the parser’s 
input. Revise the basic operations to include lexeme operations: 
reading a lexeme, copying a lexeme, comparing two lexemes.
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Parsing Wrap-Up
Efficiency of Parsing [3/5]

In all cases, for a fixed grammar or lexeme description, each of the 
methods we have discussed (State-Machine lexing, Predictive 
Recursive-Descent parsing, Shift-Reduce parsing) is linear time.

Example 1. For a State-Machine lexer, a state cannot be repeated 
without advancing the input (otherwise we have an infinite 
loop), and there are a fixed number of states.

Example 2. For a Predictive Recursive-Descent parser, a parsing 
function cannot be called multiple times without advancing the 
input, and there are a fixed number of parsing functions.

This turns out to be true in general for practical lexers and parsers.

 Practical lexers and parsers run in linear time.
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Parsing Wrap-Up
Efficiency of Parsing [4/5]

Recall that the parsing methods we covered cannot handle all 
CFLs.

In the late 1960s and 1970s, parsing methods were found that can 
handle all CFLs.

▪ Earley Parser [J. Earley 1968]

▪ CYK Parser [J. Cocke & J.T. Schwartz 1970, T. Kasami 1965, D.H. 
Younger 1967]

▪ Generalized LR (GLR) Parser [B. Lang 1974, M. Tomita 1984]

All of these have a worst-case time of Θ(n3) for an arbitrary CFL. 
Some (Earley and GLR, in particular) are faster for many CFGs, 
and linear-time for some.
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Note!
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Parsing Wrap-Up
Efficiency of Parsing [5/5]

An interesting, but impractical, method is Valiant’s Algorithm 
[L.G. Valiant 1975], which does CYK using matrix multiplication. 
So it can benefit from fast matrix-multiplication algorithms.

Using Strassen’s matrix-multiplication algorithm [V. Strassen 
1969], Valiant’s Algorithm parses any CFL in about Θ(n2.807355).

Using the Alman-Williams matrix-multiplication algorithm [J. Alman 
& V.V. Williams 2020], Valiant’s Algorithm parses any CFL in 
about Θ(n2.37286). But this method only achieves speed-ups for 
extremely large matrices; this version of Valiant’s Algorithm is 
slow for realistic input.

Remember:

 Practical lexers and parsers run in linear time.
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Parsing Wrap-Up
Parsing in Practice [1/7]

Q. Are the methods we have covered useful in production code?

A. Lua would not be my first choice for an implementation PL. But 
other than that, yes.

State-Machine lexers, Recursive-Descent parsers, and 
automatically generated Shift-Reduce parsers are all heavily 
used. So, while we have by no means looked at all known 
parsing methods, what we have covered will at least give you 
the flavor of the methods that are used in production code.

Now we take a brief look at the broader world of parsing in 
practice.
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Parsing Wrap-Up
Parsing in Practice [2/7]

The syntax of Lua is specified with a CFG. The standard Lua 
implementation uses a hand-coded Recursive-Descent parser.

However, this parser does not construct an AST. Instead, it emits 
bytecode directly. Essentially, the parser is the compiler. Such a 
parser is called a shotgun parser.

A compiler based on a shotgun parser will tend to run fast. But 
shotgun parsing is rare, because it has a number of downsides:

▪ Modularity and separation of concerns are reduced. Shotgun parsers 
are difficult to debug and maintain.

▪ Processing steps that use an intermediate representation, like static 
typing and code optimization, are difficult or impossible to do.

Because of the second point, shotgun parsers tend to produce slow 
code, and they are impractical for most statically typed PLs.
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Parsing Wrap-Up
Parsing in Practice [3/7]

Various alternatives to CFGs have been proposed. One of the more 
successful ideas is the parsing expression grammar (PEG) 
[B. Ford 2004].

A PEG looks very similar to a CFG. It has various additional options 
available. A very important difference is that, with a PEG, we 
always form a derivation using the first production that works.

In a CFG, replacing “A → B | C” with “A → C | B” changes nothing. 

But in a PEG, this replacement may result in different parse 
trees, or even a different language being generated.

Furthermore, with a PEG, there is never more than one parse tree. 
PEGs have no issues with ambiguity.

The syntax of the Python PL is currently specified with a PEG. The 
primary implementation, CPython, uses a Recursive-Descent 
parser that is generated automatically from this PEG.
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Parsing Wrap-Up
Parsing in Practice [4/7]

Originally, the C++ parser in GCC (a.k.a. g++) was automatically 
generated by GNU Bison using the LALR method, with additional 
manual editing of the generated code. However, since 2004, 
GCC has parsed C++ with a hand-coded Recursive-Descent 
parser.

Clang also parses C++ in this way.

Historically, the world of parsing has been dominated by 
automatically generated bottom-up parsers, primarily LALR 
parsers. I would imagine that it still is. For example, Ruby and 
PHP use such parsers. However, other parsing methods are 
increasingly used.
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Parsing Wrap-Up
Parsing in Practice [5/7]

Another method of interest that is actually used in practice is the 
Generalized LR (GLR) parser mentioned a few slides back.

A GLR parser uses a variant of the Shift-Reduce idea, but it allows 
for grammars that are not LR(k). Roughly speaking, it does this 
by allowing for multiple possible actions for a particular state 
and symbol, and it tries all of them.

As noted earlier, GLR parsing is generally Θ(n3). But it is much 
faster for some grammars. As a result, GLR is considered to be 
a parsing method that is sometimes practical—but only for those 
grammars for which it is efficient.

Also, GLR easily handles some situations that are problematic for 
other parsing methods. For this reason use of GLR is on the rise.
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Parsing Wrap-Up
Parsing in Practice [6/7]

Producing a parser is a very practical skill.

This might seem unlikely; for example, as a member of a software-
development team, you will probably not write a compiler.

But what is parsing?

We have defined it: parsing is determining whether input is 
syntactically correct and, if so, finding its structure.

However, there is another way of looking at it:

 Parsing is making sense of input.

And that is something that computer programs need to do a lot.
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Parsing Wrap-Up
Parsing in Practice [7/7]

Lastly, writing a parser is generally not a terribly difficult task.

So knowing how to produce a parser can be a useful addition to 
your personal toolbox.
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Thoughts on Assignment 4
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Thoughts on Assignment 4
Introduction [1/3]

In Assignment 4 you will write a Predictive Recursive-Descent 
parser, in the form of Lua module parseit. It will be similar to 
module rdparser3 (written in class), but it will involve a 
different grammar & AST specification.

Your parser will call your lexer from Assignment 3. That means 
your lexer needs to work! If you turned in a not-quite-working 
lexer in Assignment 3, then fix it. Whether you make any 
changes or not, turn in your lexer along with your parser in 
Assignment 4.

In Assignment 6 you will write an interpreter that takes, as input, 
an AST in the form your parser returns. Your lexer, parser, and 
interpreter together will form an implementation of a 
programming language called Fulmar.
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Thoughts on Assignment 4
Introduction [2/3]

Here again is a sample Fulmar program.

# fibo (param in variable n)

# Return Fibonacci number F(n).

func fibo()

    currfib = 0

    nextfib = 1

    i = 0  # Loop counter

    while i < n

        tmp = currfib + nextfib

        currfib = nextfib

        nextfib = tmp

        i = i+1

    end

    return currfib

end
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# Main program

# Print some Fibonacci numbers

how_many_to_print = 20

println("Fibonacci Numbers")

j = 0  # Loop counter

while j < how_many_to_print

    n = j  # Set param for fibo

    ff = fibo()

    println("F(", j, ") = ", ff)

    j = j+1

end
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Thoughts on Assignment 4
Introduction [3/3]

Here is a grammar specifying the syntax of Fulmar.

1. program → { statement }

2. statement → ( ‘print’ | ‘println’ ) ‘(’ [ print_arg { ‘,’ print_arg } ] ‘)’

3.    | ‘return’ expr

4.    | ID ( ‘(’ ‘)’ | [ ‘[’ expr ‘]’ ] ‘=’ expr )

5.    | ‘func’ ID ‘(’ ‘)’ program ‘end’

6.    | ‘if’ expr program { ‘elif’ expr program } [ ‘else’ program ] ‘end’

7.    | ‘while’ expr program ‘end’

8. print_arg → STRLIT

9.    | ‘chr’ ‘(’ expr ‘)’

10.    | expr

11. expr → compare_expr { ( ‘&&’ | ‘||’ ) compare_expr }

12. compare_expr → arith_expr { ( ‘==’ | ‘!=’ | ‘<’ | ‘<=’ | ‘>’ | ‘>=’ ) arith_expr }

13. arith_expr → term { ( ‘+’ | ‘–’ ) term }

14. term → factor { ( ‘*’ | ‘/’ | ‘%’ ) factor }

15. factor → NUMLIT

16.    | ‘(’ expr ‘)’

17.    | ( ‘+’ | ‘–’ | ‘!’ ) factor

18.    | ‘readnum’ ‘(’ ‘)’

19.    | ‘rnd’ ‘(’ expr ‘)’

20.    | ID [ ‘(’ ‘)’ | ‘[’ expr ‘]’ ]
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Thoughts on Assignment 4
Mistakes to Watch For [1/2]

The most common mistake I made when writing module parseit 
was forgetting to declare a variable as local.

I recommend beginning each parsing function with a local 
declaration that includes all local variables used in the function.

local good, ast, saveop, newast

My second most common mistake was to return only one value 
from a parsing function.

In the parseit module, a parsing function will always return two 
values: Boolean & AST.

▪ If the Boolean is true, then the AST must be in the proper form.

▪ If the Boolean is false, then the AST can be anything (it might as 
well be nil).
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Thoughts on Assignment 4
Mistakes to Watch For [2/2]

A mistake I have seen many students make on an assignment of 
this kind involves failing to trust their functions in some way.

Remember:

 If you have a function that does something, and you need 
to do that thing, then call the function.

So:

▪ If you need something parsed, then call the appropriate parsing 
function, and trust that function to do it right.

▪ Do not try to do a function’s work for it.

▪ If something has already been written, then you do not need to 
write it again.
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Thoughts on Assignment 4
Starting Out

There are three files in the Git repository that you may find 
helpful:

▪ parseit.lua. This is an incomplete version of my solution to the 
assignment. It is not all there, but the code that is there is correct 
(I think). Please base your work on this file.

▪ rdparser3.lua. This is the same kind of parser as the one you are 
to write. In particular the expression-parsing code that you need to 
write will be very similar to that in rdparser3.lua.

▪ use_parseit.lua. This is the usual “use_…” program. It sends 
input to your parser and prints the result. You can try out different 
inputs by editing this file.
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See parseit.lua, 

rdparser3.lua, 

use_parseit.lua.
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Unit Overview
The Haskell Programming Language

Our fourth unit: The Haskell Programming Language.

Topics

▪ PL feature: type system

▪ PL category: functional PLs

▪ Introduction to Haskell

▪ Haskell: functions

▪ Haskell: lists

▪ Haskell: flow of control

▪ Haskell: I/O

▪ Haskell: data

At the end of this unit, the Midterm Exam will be given in class.

Then we will cover The Scheme Programming Language after 
Spring Break.
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PL Feature: Type System
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PL Feature: Type System
Basic Concepts [1/3]

A type system is a way of classifying values and/or the entities 
that represent them in a program, by kind of value, in order to
prevent undesirable program states.

Each classification is a type.

int abc;

abc = 123 + 456;

cout << 4.2;
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In C++, int is a type.
abc is a variable of type int.

123 and 456 are literals of type int.

123 + 456 is an expression of type int.

4.2 is a literal of type double.

cout is a variable (an object) of type std::ostream.

These slides are an incomplete 
summary of the reading

“A Primer on Type Systems”. 
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PL Feature: Type System
Basic Concepts [2/3]

The great majority of PLs include some kind of type system.

In the past, PLs often had a fixed set of types. Many modern PLs 
have an extensible type system: one that allows programmers 
to define new types.

class Zebra {  // New C++ type named "Zebra"

    …

Type checking means checking & enforcing the restrictions 
associated with a type system.

The various actions involved with a type system (determining 
types, type checking) are collectively known as typing.
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PL Feature: Type System
Basic Concepts [3/3]

Types are used in three ways. They are used to determine:

1. Which values an entity may take on.

int abc = vector<int>();  // Type error: RHS is not int

2. Which operations are legal.

cout << *abc;  // Type error: cannot dereference int

3. Which of multiple possible operations to perform.

cout << 123 + 456;  // + does int addition

string ss1, ss2;

cout << ss1 + ss2;  // + does string concatenation
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PL Feature: Type System
Classifying Type Systems [1/2]

We classify type systems along three axes.

1. Overall type system: static or dynamic.

2. How types are specified: manifest or implicit.

3. How types are checked: nominal or structural.

We can also consider type safety.
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PL Feature: Type System
Classifying Type Systems [2/2]

The following table shows how the type systems of various PLs can 
be classified along our first two axes.
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Mostly Manifest Mostly Implicit

Static C, C++, Java Haskell, OCaml

Dynamic Not much goes here
Python, Lua, Ruby, 

JavaScript, Scheme

Type Specification

Overall

Type
System
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PL Feature: Type System
Type Safety [1/3]

A PL or PL construct is type-safe if it forbids operations that are 
incorrect for the types on which they operate.

Some PLs/constructs discourage incorrect operations without 
forbidding them. We may compare their level of type safety.

The C/C++ printf function is not type-safe. The following 
assumes age has type int, but does not check. It may behave 
oddly if age has a different type.

printf("I am %d years old.", age);

C++ stream I/O is type-safe. Below, age is output correctly, based 
on its type. This will not compile if that type cannot be output.

cout << "I am " << age << " years old.";
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PL Feature: Type System
Type Safety [2/3]

A static type system is sound if it guarantees that operations that 
are incorrect for a type will not be performed; otherwise it is 
unsound.

Haskell has a sound type system. C and C++ have unsound type 
systems.

This is not a criticism! The type systems of C and C++ are 
intentionally unsound.

In the world of dynamic typing, there does not seem to be any 
standard terminology corresponding to soundness. However, we 
can still talk about whether a dynamic type system strictly 
enforces type safety.
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PL Feature: Type System
Type Safety [3/3]

Two unfortunate terms are often used in discussions of type 
safety: strong typing (or strongly typed) and weak typing 
(or weakly typed). These generally have something to do with 
the overall level of type safety offered by a PL.

But these terms have no standard definitions. They are used in 
different ways by different people. (I have seen at least three 
definitions of “strongly typed” in common use. C is strongly 
typed by one of them and weakly typed by the other two.)

Therefore:

 Avoid using the terms “strong” and “weak” typing, or 
“strongly typed” and “weakly typed”.
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