
Parsing Wrap-Up
Thoughts on Assignment 4
PL Feature: Type System

CS 331 Programming Languages

Lecture Slides

Wednesday, February 19, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

2025-02-19 CS 331 Spring 2025

Unit Overview
Lexing & Parsing

Topics

▪ Introduction to lexing & parsing

▪ The basics of lexical analysis

▪ State-machine lexing

▪ The basics of syntax analysis

▪ Recursive-descent parsing

▪ Shift-reduce parsing

▪ Parsing wrap-up




Lexical Analysis (Lexing)

Syntax Analysis (Parsing)









2

Review

2025-02-19 CS 331 Spring 2025 3

Review
Introduction to Lexing & Parsing

Two steps:

▪ Lexical analysis (lexing)

▪ Syntax analysis (parsing)

The output of a parser is typically an abstract syntax tree (AST).
Specifications of these vary.

2025-02-19 CS 331 Spring 2025

Parser
Lexeme
Stream

AST or
Error

Lexer
Character

Stream

return (*dp + 2.6); //x returnStmt

id: dp

return (*dp + 2.6); //x

binOp: +

unOp: * numLit: 2.6

key

punct

id op num
lit

op

punct

4

Review
The Basics of Syntax Analysis

Parsing methods can be divided into two broad categories:
top-down and bottom-up.

Top-Down Parsers

▪ Go through derivation top to bottom, expanding nonterminals.

▪ Sometimes hand-coded and sometimes automatically generated.

▪ Method we look at: Predictive Recursive Descent.

Bottom-Up Parsers

▪ Go through the derivation bottom to top, reducing substrings to
nonterminals.

▪ Code is almost always automatically generated.

▪ Method we look at: Shift-Reduce.

2025-02-19 CS 331 Spring 2025 5

Review
Shift-Reduce Parsing [1/3]

Shift-Reduce parsing is a table-based bottom-up method.

Parser execution uses a state machine with
a stack, called a Shift-Reduce automaton.

Each stack item holds a symbol and a state.

Operation is specified by a parsing table in two parts—action
table & goto table—constructed before execution.

At each time step a lookup in the action table is done. One of four
operations will be specified.

▪ SHIFT. Shift the next input symbol onto the stack.

▪ REDUCE. Apply a production in reverse, reducing symbols on the
stack to a single nonterminal. See the goto table for the new state.

▪ ACCEPT. Done, syntactically correct.

▪ ERROR. Done, syntax error.

2025-02-19 CS 331 Spring 2025

1

Stack

2ID (a)

4=

8expr

6

Review
Shift-Reduce Parsing [2/3]

If a Shift-Reduce parser does not do multi-symbol look-ahead
(which is typical), then the grammars a correct parser can be
based on are called the LR(1) grammars.

The natural grammar for expressions with left-associative binary
operators is typically an LR(1) grammar. Unlike Predictive
Recursive Descent, Shift-Reduce parsing has no problem with
productions that involve left recursion, like the following.

expr → term

 | expr (“+” | “-”) term

2025-02-19 CS 331 Spring 2025 7

Review
Shift-Reduce Parsing [3/3]

A description of a parsing method includes both how the Shift-
Reduce parser works and how the parsing tables are generated.

Generating Shift-Reduce parsing tables in a straightforward way
tends to result in large, impractical tables. Various ways of
generating smaller tables are known, but these generally do not
work for all LR(1) grammars.

Probably the most common way of generating smaller parsing
tables involves a procedure for merging states [F. DeRemer
1969]. The LR(1) grammars for which this gives correct results
are the LALR(1) grammars (Look-Ahead LR(1) grammars).

The Yacc parser generator and its descendants (GNU Bison, etc.),
generally default to generating parsing tables using this method.

2025-02-19 CS 331 Spring 2025 8

Parsing Wrap-Up

2025-02-19 CS 331 Spring 2025 9

Parsing Wrap-Up
Efficiency of Parsing [1/5]

We have discussed parsing algorithms that can handle some, but
not all, CFLs. We have not yet discussed their efficiency.

How can we analyze the running time of a parsing (or lexing)
method?

Recall (from CS 311) that, when we analyze algorithms, we need
to be clear on three things:

▪ How we measure the size of the input (usually denoted by n).

▪ What operations are allowed.

▪ What operations we count (the basic operations).

2025-02-19 CS 331 Spring 2025 10

Parsing Wrap-Up
Efficiency of Parsing [2/5]

One reasonable option:

▪ The size of the input (n) is the number of characters in it.

▪ Allowed operations are reading a single input character, along
with any internal processing operations we want.

▪ Basic operations are reading a single input character, along with
the usual C operators.

This approach works nicely when the input is a character stream:
analyzing a lexer, a parser in which lexing is not a separate
step, or a lexer & parser considered together.

For a parser considered in isolation, with the lexer being separate,
we can let n be the number of lexemes in the parser’s
input. Revise the basic operations to include lexeme operations:
reading a lexeme, copying a lexeme, comparing two lexemes.

2025-02-19 CS 331 Spring 2025 11

Parsing Wrap-Up
Efficiency of Parsing [3/5]

In all cases, for a fixed grammar or lexeme description, each of the
methods we have discussed (State-Machine lexing, Predictive
Recursive-Descent parsing, Shift-Reduce parsing) is linear time.

Example 1. For a State-Machine lexer, a state cannot be repeated
without advancing the input (otherwise we have an infinite
loop), and there are a fixed number of states.

Example 2. For a Predictive Recursive-Descent parser, a parsing
function cannot be called multiple times without advancing the
input, and there are a fixed number of parsing functions.

This turns out to be true in general for practical lexers and parsers.

 Practical lexers and parsers run in linear time.

2025-02-19 CS 331 Spring 2025 12

Parsing Wrap-Up
Efficiency of Parsing [4/5]

Recall that the parsing methods we covered cannot handle all
CFLs.

In the late 1960s and 1970s, parsing methods were found that can
handle all CFLs.

▪ Earley Parser [J. Earley 1968]

▪ CYK Parser [J. Cocke & J.T. Schwartz 1970, T. Kasami 1965, D.H.
Younger 1967]

▪ Generalized LR (GLR) Parser [B. Lang 1974, M. Tomita 1984]

All of these have a worst-case time of Θ(n3) for an arbitrary CFL.
Some (Earley and GLR, in particular) are faster for many CFGs,
and linear-time for some.

2025-02-19 CS 331 Spring 2025

Note!

13

Parsing Wrap-Up
Efficiency of Parsing [5/5]

An interesting, but impractical, method is Valiant’s Algorithm
[L.G. Valiant 1975], which does CYK using matrix multiplication.
So it can benefit from fast matrix-multiplication algorithms.

Using Strassen’s matrix-multiplication algorithm [V. Strassen
1969], Valiant’s Algorithm parses any CFL in about Θ(n2.807355).

Using the Alman-Williams matrix-multiplication algorithm [J. Alman
& V.V. Williams 2020], Valiant’s Algorithm parses any CFL in
about Θ(n2.37286). But this method only achieves speed-ups for
extremely large matrices; this version of Valiant’s Algorithm is
slow for realistic input.

Remember:

 Practical lexers and parsers run in linear time.

2025-02-19 CS 331 Spring 2025 14

Parsing Wrap-Up
Parsing in Practice [1/7]

Q. Are the methods we have covered useful in production code?

A. Lua would not be my first choice for an implementation PL. But
other than that, yes.

State-Machine lexers, Recursive-Descent parsers, and
automatically generated Shift-Reduce parsers are all heavily
used. So, while we have by no means looked at all known
parsing methods, what we have covered will at least give you
the flavor of the methods that are used in production code.

Now we take a brief look at the broader world of parsing in
practice.

2025-02-19 CS 331 Spring 2025 15

Parsing Wrap-Up
Parsing in Practice [2/7]

The syntax of Lua is specified with a CFG. The standard Lua
implementation uses a hand-coded Recursive-Descent parser.

However, this parser does not construct an AST. Instead, it emits
bytecode directly. Essentially, the parser is the compiler. Such a
parser is called a shotgun parser.

A compiler based on a shotgun parser will tend to run fast. But
shotgun parsing is rare, because it has a number of downsides:

▪ Modularity and separation of concerns are reduced. Shotgun parsers
are difficult to debug and maintain.

▪ Processing steps that use an intermediate representation, like static
typing and code optimization, are difficult or impossible to do.

Because of the second point, shotgun parsers tend to produce slow
code, and they are impractical for most statically typed PLs.

2025-02-19 CS 331 Spring 2025 16

Parsing Wrap-Up
Parsing in Practice [3/7]

Various alternatives to CFGs have been proposed. One of the more
successful ideas is the parsing expression grammar (PEG)
[B. Ford 2004].

A PEG looks very similar to a CFG. It has various additional options
available. A very important difference is that, with a PEG, we
always form a derivation using the first production that works.

In a CFG, replacing “A → B | C” with “A → C | B” changes nothing.

But in a PEG, this replacement may result in different parse
trees, or even a different language being generated.

Furthermore, with a PEG, there is never more than one parse tree.
PEGs have no issues with ambiguity.

The syntax of the Python PL is currently specified with a PEG. The
primary implementation, CPython, uses a Recursive-Descent
parser that is generated automatically from this PEG.

2025-02-19 CS 331 Spring 2025 17

Parsing Wrap-Up
Parsing in Practice [4/7]

Originally, the C++ parser in GCC (a.k.a. g++) was automatically
generated by GNU Bison using the LALR method, with additional
manual editing of the generated code. However, since 2004,
GCC has parsed C++ with a hand-coded Recursive-Descent
parser.

Clang also parses C++ in this way.

Historically, the world of parsing has been dominated by
automatically generated bottom-up parsers, primarily LALR
parsers. I would imagine that it still is. For example, Ruby and
PHP use such parsers. However, other parsing methods are
increasingly used.

2025-02-19 CS 331 Spring 2025 18

Parsing Wrap-Up
Parsing in Practice [5/7]

Another method of interest that is actually used in practice is the
Generalized LR (GLR) parser mentioned a few slides back.

A GLR parser uses a variant of the Shift-Reduce idea, but it allows
for grammars that are not LR(k). Roughly speaking, it does this
by allowing for multiple possible actions for a particular state
and symbol, and it tries all of them.

As noted earlier, GLR parsing is generally Θ(n3). But it is much
faster for some grammars. As a result, GLR is considered to be
a parsing method that is sometimes practical—but only for those
grammars for which it is efficient.

Also, GLR easily handles some situations that are problematic for
other parsing methods. For this reason use of GLR is on the rise.

2025-02-19 CS 331 Spring 2025 19

Parsing Wrap-Up
Parsing in Practice [6/7]

Producing a parser is a very practical skill.

This might seem unlikely; for example, as a member of a software-
development team, you will probably not write a compiler.

But what is parsing?

We have defined it: parsing is determining whether input is
syntactically correct and, if so, finding its structure.

However, there is another way of looking at it:

 Parsing is making sense of input.

And that is something that computer programs need to do a lot.

2025-02-19 CS 331 Spring 2025 20

Parsing Wrap-Up
Parsing in Practice [7/7]

Lastly, writing a parser is generally not a terribly difficult task.

So knowing how to produce a parser can be a useful addition to
your personal toolbox.

2025-02-19 CS 331 Spring 2025 21

Thoughts on Assignment 4

2025-02-19 CS 331 Spring 2025 22

Thoughts on Assignment 4
Introduction [1/3]

In Assignment 4 you will write a Predictive Recursive-Descent
parser, in the form of Lua module parseit. It will be similar to
module rdparser3 (written in class), but it will involve a
different grammar & AST specification.

Your parser will call your lexer from Assignment 3. That means
your lexer needs to work! If you turned in a not-quite-working
lexer in Assignment 3, then fix it. Whether you make any
changes or not, turn in your lexer along with your parser in
Assignment 4.

In Assignment 6 you will write an interpreter that takes, as input,
an AST in the form your parser returns. Your lexer, parser, and
interpreter together will form an implementation of a
programming language called Fulmar.

2025-02-19 CS 331 Spring 2025 23

Thoughts on Assignment 4
Introduction [2/3]

Here again is a sample Fulmar program.

fibo (param in variable n)

Return Fibonacci number F(n).

func fibo()

 currfib = 0

 nextfib = 1

 i = 0 # Loop counter

 while i < n

 tmp = currfib + nextfib

 currfib = nextfib

 nextfib = tmp

 i = i+1

 end

 return currfib

end

2025-02-19 CS 331 Spring 2025

Main program

Print some Fibonacci numbers

how_many_to_print = 20

println("Fibonacci Numbers")

j = 0 # Loop counter

while j < how_many_to_print

 n = j # Set param for fibo

 ff = fibo()

 println("F(", j, ") = ", ff)

 j = j+1

end

24

Thoughts on Assignment 4
Introduction [3/3]

Here is a grammar specifying the syntax of Fulmar.

1. program → { statement }

2. statement → (‘print’ | ‘println’) ‘(’ [print_arg { ‘,’ print_arg }] ‘)’

3. | ‘return’ expr

4. | ID (‘(’ ‘)’ | [‘[’ expr ‘]’] ‘=’ expr)

5. | ‘func’ ID ‘(’ ‘)’ program ‘end’

6. | ‘if’ expr program { ‘elif’ expr program } [‘else’ program] ‘end’

7. | ‘while’ expr program ‘end’

8. print_arg → STRLIT

9. | ‘chr’ ‘(’ expr ‘)’

10. | expr

11. expr → compare_expr { (‘&&’ | ‘||’) compare_expr }

12. compare_expr → arith_expr { (‘==’ | ‘!=’ | ‘<’ | ‘<=’ | ‘>’ | ‘>=’) arith_expr }

13. arith_expr → term { (‘+’ | ‘–’) term }

14. term → factor { (‘*’ | ‘/’ | ‘%’) factor }

15. factor → NUMLIT

16. | ‘(’ expr ‘)’

17. | (‘+’ | ‘–’ | ‘!’) factor

18. | ‘readnum’ ‘(’ ‘)’

19. | ‘rnd’ ‘(’ expr ‘)’

20. | ID [‘(’ ‘)’ | ‘[’ expr ‘]’]

2025-02-19 CS 331 Spring 2025 25

Thoughts on Assignment 4
Mistakes to Watch For [1/2]

The most common mistake I made when writing module parseit
was forgetting to declare a variable as local.

I recommend beginning each parsing function with a local
declaration that includes all local variables used in the function.

local good, ast, saveop, newast

My second most common mistake was to return only one value
from a parsing function.

In the parseit module, a parsing function will always return two
values: Boolean & AST.

▪ If the Boolean is true, then the AST must be in the proper form.

▪ If the Boolean is false, then the AST can be anything (it might as
well be nil).

2025-02-19 CS 331 Spring 2025 26

Thoughts on Assignment 4
Mistakes to Watch For [2/2]

A mistake I have seen many students make on an assignment of
this kind involves failing to trust their functions in some way.

Remember:

 If you have a function that does something, and you need
to do that thing, then call the function.

So:

▪ If you need something parsed, then call the appropriate parsing
function, and trust that function to do it right.

▪ Do not try to do a function’s work for it.

▪ If something has already been written, then you do not need to
write it again.

2025-02-19 CS 331 Spring 2025 27

Thoughts on Assignment 4
Starting Out

There are three files in the Git repository that you may find
helpful:

▪ parseit.lua. This is an incomplete version of my solution to the
assignment. It is not all there, but the code that is there is correct
(I think). Please base your work on this file.

▪ rdparser3.lua. This is the same kind of parser as the one you are
to write. In particular the expression-parsing code that you need to
write will be very similar to that in rdparser3.lua.

▪ use_parseit.lua. This is the usual “use_…” program. It sends
input to your parser and prints the result. You can try out different
inputs by editing this file.

2025-02-19 CS 331 Spring 2025

See parseit.lua,

rdparser3.lua,

use_parseit.lua.

28

2025-02-19 CS 331 Spring 2025

Unit Overview
The Haskell Programming Language

Our fourth unit: The Haskell Programming Language.

Topics

▪ PL feature: type system

▪ PL category: functional PLs

▪ Introduction to Haskell

▪ Haskell: functions

▪ Haskell: lists

▪ Haskell: flow of control

▪ Haskell: I/O

▪ Haskell: data

At the end of this unit, the Midterm Exam will be given in class.

Then we will cover The Scheme Programming Language after
Spring Break.

29

PL Feature: Type System

2025-02-19 CS 331 Spring 2025 30

PL Feature: Type System
Basic Concepts [1/3]

A type system is a way of classifying values and/or the entities
that represent them in a program, by kind of value, in order to
prevent undesirable program states.

Each classification is a type.

int abc;

abc = 123 + 456;

cout << 4.2;

2025-02-19 CS 331 Spring 2025

In C++, int is a type.
abc is a variable of type int.

123 and 456 are literals of type int.

123 + 456 is an expression of type int.

4.2 is a literal of type double.

cout is a variable (an object) of type std::ostream.

These slides are an incomplete
summary of the reading

“A Primer on Type Systems”.

31

PL Feature: Type System
Basic Concepts [2/3]

The great majority of PLs include some kind of type system.

In the past, PLs often had a fixed set of types. Many modern PLs
have an extensible type system: one that allows programmers
to define new types.

class Zebra { // New C++ type named "Zebra"

 …

Type checking means checking & enforcing the restrictions
associated with a type system.

The various actions involved with a type system (determining
types, type checking) are collectively known as typing.

2025-02-19 CS 331 Spring 2025 32

PL Feature: Type System
Basic Concepts [3/3]

Types are used in three ways. They are used to determine:

1. Which values an entity may take on.

int abc = vector<int>(); // Type error: RHS is not int

2. Which operations are legal.

cout << *abc; // Type error: cannot dereference int

3. Which of multiple possible operations to perform.

cout << 123 + 456; // + does int addition

string ss1, ss2;

cout << ss1 + ss2; // + does string concatenation

2025-02-19 CS 331 Spring 2025 33

PL Feature: Type System
Classifying Type Systems [1/2]

We classify type systems along three axes.

1. Overall type system: static or dynamic.

2. How types are specified: manifest or implicit.

3. How types are checked: nominal or structural.

We can also consider type safety.

2025-02-19 CS 331 Spring 2025 34

PL Feature: Type System
Classifying Type Systems [2/2]

The following table shows how the type systems of various PLs can
be classified along our first two axes.

2025-02-19 CS 331 Spring 2025

Mostly Manifest Mostly Implicit

Static C, C++, Java Haskell, OCaml

Dynamic Not much goes here
Python, Lua, Ruby,

JavaScript, Scheme

Type Specification

Overall

Type
System

35

PL Feature: Type System
Type Safety [1/3]

A PL or PL construct is type-safe if it forbids operations that are
incorrect for the types on which they operate.

Some PLs/constructs discourage incorrect operations without
forbidding them. We may compare their level of type safety.

The C/C++ printf function is not type-safe. The following
assumes age has type int, but does not check. It may behave
oddly if age has a different type.

printf("I am %d years old.", age);

C++ stream I/O is type-safe. Below, age is output correctly, based
on its type. This will not compile if that type cannot be output.

cout << "I am " << age << " years old.";

2025-02-19 CS 331 Spring 2025 36

PL Feature: Type System
Type Safety [2/3]

A static type system is sound if it guarantees that operations that
are incorrect for a type will not be performed; otherwise it is
unsound.

Haskell has a sound type system. C and C++ have unsound type
systems.

This is not a criticism! The type systems of C and C++ are
intentionally unsound.

In the world of dynamic typing, there does not seem to be any
standard terminology corresponding to soundness. However, we
can still talk about whether a dynamic type system strictly
enforces type safety.

2025-02-19 CS 331 Spring 2025 37

PL Feature: Type System
Type Safety [3/3]

Two unfortunate terms are often used in discussions of type
safety: strong typing (or strongly typed) and weak typing
(or weakly typed). These generally have something to do with
the overall level of type safety offered by a PL.

But these terms have no standard definitions. They are used in
different ways by different people. (I have seen at least three
definitions of “strongly typed” in common use. C is strongly
typed by one of them and weakly typed by the other two.)

Therefore:

 Avoid using the terms “strong” and “weak” typing, or
“strongly typed” and “weakly typed”.

2025-02-19 CS 331 Spring 2025 38

	Slide 1: Parsing Wrap-Up Thoughts on Assignment 4 PL Feature: Type System
	Slide 2: Unit Overview Lexing & Parsing
	Slide 3
	Slide 4: Review Introduction to Lexing & Parsing
	Slide 5: Review The Basics of Syntax Analysis
	Slide 6: Review Shift-Reduce Parsing [1/3]
	Slide 7: Review Shift-Reduce Parsing [2/3]
	Slide 8: Review Shift-Reduce Parsing [3/3]
	Slide 9
	Slide 10: Parsing Wrap-Up Efficiency of Parsing [1/5]
	Slide 11: Parsing Wrap-Up Efficiency of Parsing [2/5]
	Slide 12: Parsing Wrap-Up Efficiency of Parsing [3/5]
	Slide 13: Parsing Wrap-Up Efficiency of Parsing [4/5]
	Slide 14: Parsing Wrap-Up Efficiency of Parsing [5/5]
	Slide 15: Parsing Wrap-Up Parsing in Practice [1/7]
	Slide 16: Parsing Wrap-Up Parsing in Practice [2/7]
	Slide 17: Parsing Wrap-Up Parsing in Practice [3/7]
	Slide 18: Parsing Wrap-Up Parsing in Practice [4/7]
	Slide 19: Parsing Wrap-Up Parsing in Practice [5/7]
	Slide 20: Parsing Wrap-Up Parsing in Practice [6/7]
	Slide 21: Parsing Wrap-Up Parsing in Practice [7/7]
	Slide 22
	Slide 23: Thoughts on Assignment 4 Introduction [1/3]
	Slide 24: Thoughts on Assignment 4 Introduction [2/3]
	Slide 25: Thoughts on Assignment 4 Introduction [3/3]
	Slide 26: Thoughts on Assignment 4 Mistakes to Watch For [1/2]
	Slide 27: Thoughts on Assignment 4 Mistakes to Watch For [2/2]
	Slide 28: Thoughts on Assignment 4 Starting Out
	Slide 29: Unit Overview The Haskell Programming Language
	Slide 30
	Slide 31: PL Feature: Type System Basic Concepts [1/3]
	Slide 32: PL Feature: Type System Basic Concepts [2/3]
	Slide 33: PL Feature: Type System Basic Concepts [3/3]
	Slide 34: PL Feature: Type System Classifying Type Systems [1/2]
	Slide 35: PL Feature: Type System Classifying Type Systems [2/2]
	Slide 36: PL Feature: Type System Type Safety [1/3]
	Slide 37: PL Feature: Type System Type Safety [2/3]
	Slide 38: PL Feature: Type System Type Safety [3/3]

