
Recursive-Descent Parsing

CS 331 Programming Languages

Lecture Slides

Friday, February 14, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

continued

2025-02-14 CS 331 Spring 2025

Unit Overview
Lexing & Parsing

Topics

▪ Introduction to lexing & parsing

▪ The basics of lexical analysis

▪ State-machine lexing

▪ The basics of syntax analysis

▪ Recursive-descent parsing

▪ Shift-reduce parsing

▪ Parsing wrap-up




Lexical Analysis (Lexing)

Syntax Analysis (Parsing)
(part)





2

Review

2025-02-14 CS 331 Spring 2025 3

Review
Introduction to Lexing & Parsing

Two steps:

▪ Lexical analysis (lexing)

▪ Syntax analysis (parsing)

The output of a parser is typically an abstract syntax tree (AST).
Specifications of these vary.

2025-02-14 CS 331 Spring 2025

Parser
Lexeme
Stream

AST or
Error

Lexer
Character

Stream

return (*dp + 2.6); //x returnStmt

id: dp

return (*dp + 2.6); //x

binOp: +

unOp: * numLit: 2.6

key

punct

id op num
lit

op

punct

4

Review
Recursive-Descent Parsing [1/4]

Recursive Descent is a top-down parsing method.

Predictive Recursive Descent: no backtracking.

There is one parsing function for each nonterminal. This parses all
strings that the nonterminal can be expanded into.

Parsing-function code is a translation of the right-hand side of the
production for the nonterminal.

▪ A terminal in the right-hand side becomes a check that the input
string contains the proper lexeme.

▪ A nonterminal becomes a call to its parsing function.
▪ If that returns false, our function must return false—no backtracking.

▪ Brackets […] become a conditional.

▪ Braces { … } become a loop.

2025-02-14 CS 331 Spring 2025

See rdparser2.lua &

use_rdparser2.lua.

5

Review
Recursive-Descent Parsing [2/4]

An LL(k) grammar (k is a number) is a CFG on which we can
base a Predictive Recursive Descent parser that makes decisions
using k upcoming lexemes.

Since we do not do multi-symbol look-ahead, the CFG that each of
our parsers is based must be an LL(1) grammar.

With an LL(1) grammar, we must be able to make decisions (which
production to use, whether to parse an optional portion, whether
we have a syntax error) based only on the current lexeme.

Last time we looked at several non-LL(1) grammars.

2025-02-14 CS 331 Spring 2025 6

Review
Recursive-Descent Parsing [3/4]

We wish to parse arithmetic expressions involving the usual binary
operators, returning an abstract syntax tree (AST).

Operators are left-associative: “a + b + c” means “(a + b) + c”.

Precedence is as usual: “a + b * c” means “a + (b * c)”.

Override with parentheses: “(a + b) * c”.

We use our in-class lexer, so “k-4” must be written as “k - 4”.

2025-02-14 CS 331 Spring 2025 7

Review
Recursive-Descent Parsing [4/4]

Grammar 3 encodes associativity and precedence, and it allows
use of parentheses to override them.

Grammar 3

expr → term

 | expr (“+” | “-”) term

term → factor

 | term (“*” | “/”) factor

factor → ID

 | NUMLIT

 | “(” expr “)”

The code on the right is a (correct!) translation of part of the
grammar. But the code has problems, indicating that the
grammar is not LL(1). We cannot use this grammar—directly.

2025-02-14 CS 331 Spring 2025

function parse_expr()

 if parse_term() then

 … -- Construct AST

 return true

 elseif parse_expr() then

 …

8

Recursive-Descent Parsing

2025-02-14 CS 331 Spring 2025

continued

9

Recursive-Descent Parsing
Transforming Grammars [1/3]

If a CFG is not an LL(1) grammar, this does not necessarily mean
that it is completely useless for writing a Predictive Recursive-
Descent parser. We might be able to transform the grammar
into an LL(1) grammar that generates the same language.

Here is Grammar A from last time. It is not LL(1). On the right is
an LL(1) grammar that generates the same language.

Grammar A

xx → xx “+” “b” | “a”

2025-02-14 CS 331 Spring 2025

Grammar Aa

xx → “a” yy

yy → “+” “b” yy | “”

10

Recursive-Descent Parsing
Transforming Grammars [2/3]

Here is Grammar B, which is not LL(1). Again, on the right is an
LL(1) grammar that generates the same language.

Grammar B

xx → “a” yy | “a” zz

yy → “*”

zz → “/”

2025-02-14 CS 331 Spring 2025

Grammar Ba

xx → “a” yy

yy → “*” | “/”

11

Recursive-Descent Parsing
Transforming Grammars [3/3]

For each of the other examples of non-LL(1) grammars discussed
last time, we can find an LL(1) grammar that generates the
same language.

Note, however, that there are context-free languages that cannot
be generated by any LL(1) grammar—or LL(k) grammar for any
k—at all.

In the specification of programming-language syntax, it is common
to be faced with a grammar that is not LL(1), but that can be
transformed to one that is LL(1).

Next, we look at this issue for our expression grammar.

2025-02-14 CS 331 Spring 2025 12

Recursive-Descent Parsing
Back to Example #3: Expressions — Left-Associativity [1/5]

Now we return to our expression grammar. It is given below.
Recall that this is not an LL(1) grammar.

Grammar 3

expr → term

 | expr (“+” | “-”) term

term → factor

 | term (“*” | “/”) factor

factor → ID

 | NUMLIT

 | “(” expr “)”

More generally, the natural grammars for expressions involving
left-associative binary operators are not LL(1); they are, in fact,
not LL(k) for any k.

2025-02-14 CS 331 Spring 2025 13

Recursive-Descent Parsing
Back to Example #3: Expressions — Left-Associativity [2/5]

An easy fix is to reorder the operands; for example,
expr (“+” | “-”) term becomes term (“+” | “-”) expr.

I will also use brackets ([…]) to make the grammar more concise.

Here is the result. This is an LL(1) grammar.

Grammar 3a

expr → term [(“+” | “-”) expr]

term → factor [(“*” | “/”) term]

factor → ID

 | NUMLIT

 | “(” expr “)”

But now we have a new problem. See the next slide …

2025-02-14 CS 331 Spring 2025 14

Recursive-Descent Parsing
Back to Example #3: Expressions — Left-Associativity [3/5]

Grammar 3a

expr → term [(“+” | “-”) expr]

term → factor [(“*” | “/”) term]

factor → ID

 | NUMLIT

 | “(” expr “)”

Grammar 3a is an LL(1) grammar, but it encodes right-associative
binary operators. We want our operators to be left-associative.

2025-02-14 CS 331 Spring 2025

a + b + c

expr

term expr

termLeft-associative:

Right-associative:

15

Recursive-Descent Parsing
Back to Example #3: Expressions — Left-Associativity [4/5]

Fortunately, all is not lost. Here is an idea that works.

Start with a problematic production from Grammar 3a.

expr → term [(“+” | “-”) expr]

Rewrite using braces:

expr → term { (“+” | “-”) term }

Arguably, this still does not encode left-associative operators.
However, our implementation would now involve a loop, not
recursion. As we go through the loop, we can easily construct
the AST for left-associative operators.

2025-02-14 CS 331 Spring 2025

Note!

16

Recursive-Descent Parsing
Back to Example #3: Expressions — Left-Associativity [5/5]

Grammar 3b, below, is what we
want. It works with a Predictive
Recursive-Descent parser, and
we can use it to parse left-
associative binary operators.

Grammar 3b

expr → term { (“+” | “-”) term }

term → factor { (“*” | “/”) factor }

factor → ID

 | NUMLIT

 | “(” expr “)”

Now, what about constructing an AST?

2025-02-14 CS 331 Spring 2025

function parse_expr()

 if not parse_term() then

 return false

 end

 while matchString("+")

 or matchString("-") do

 if not parse_term() then

 return false

 end

 end

 -- Construct AST here

 return true

end

17

Recursive-Descent Parsing
Back to Example #3: Expressions — ASTs [1/4]

Let’s review the idea of a rooted tree.

A node with no children is a leaf. Any other node
is an internal node.

The tree to the right has 3 leaves (B, D, E)
and 2 internal nodes (A, C).

The subtrees of an internal node are those rooted
at each of its children.

In the tree to the right, the two subtrees of
the A node are circled.

2025-02-14 CS 331 Spring 2025

D E

A

B C

D E

A

B C

Rooted

Tree

Root

18

Recursive-Descent Parsing
Back to Example #3: Expressions — ASTs [2/4]

Recall that a parse tree includes one leaf node for each lexeme in
the input, and also one node for each nonterminal in the
derivation.

Here is the parse tree for a + 2, based on Grammar 3b.

2025-02-14 CS 331 Spring 2025

ID (a) NUMLIT (2)

expr

term

factor

+ term

factor

This is not new!
It is the same
kind of tree we
drew before.

19

Recursive-Descent Parsing
Back to Example #3: Expressions — ASTs [3/4]

An abstract syntax tree (AST) is a rooted tree representing the
structure of parsed input. Each internal node represents an
operation. Its subtrees are the ASTs for the entities the
operation is applied to.

On the left is our parse tree for a + 2, slightly simplified. On the
right is an AST for the same expression.

Operation may be broadly defined. For example, an AST node
might represent the operation “execute these statements, in
order”. Its subtrees would be ASTs for the statements.

2025-02-14 CS 331 Spring 2025

a 2

expr

term

factor

+ term

factor

+

a 2

This is
new.

Parse Tree
Abstract
Syntax Tree

20

Recursive-Descent Parsing
Back to Example #3: Expressions — ASTs [4/4]

The subtrees of an internal node in an AST are ASTs themselves.
So we can build an AST from smaller ASTs in the same way we
build an expression from smaller expressions.

Observe that ASTs omit syntax that only serves to guide the
parser—like semicolons and parentheses in a typical PL.

There is no universal specification for an AST. Instead, the ASTs
used in a software project are specified in a way that meets the
needs of that project.

2025-02-14 CS 331 Spring 2025

+

a 2

AST for
a + 2 *

+ b

a 2

AST for
(a + 2) * b

21

Recursive-Descent Parsing
Back to Example #3: Expressions — Representing ASTs [1/6]

We need to represent ASTs like these in Lua.

▪ Represent a single node by the string form of its lexeme.

▪ If there is more than one node in an AST, then represent the AST as
an array whose first item represents the root, while each remaining
item represents one of the subtrees of the root, in order.

The first AST, in Lua: { "+", "a", "2" }

TRY IT. What is the Lua representation of the second AST?

Answer on next slide.

2025-02-14 CS 331 Spring 2025

*

+ b

a 2

+

a 2

22

Recursive-Descent Parsing
Back to Example #3: Expressions — Representing ASTs [2/6]

We need to represent ASTs like these in Lua.

▪ Represent a single node by the string form of its lexeme.

▪ If there is more than one node in an AST, then represent the AST as
an array whose first item represents the root, while each remaining
item represents one of the subtrees of the root, in order.

The first AST, in Lua: { "+", "a", "2" }

TRY IT. What is the Lua representation of the second AST?

Answer: { "*", { "+", "a", "2" }, "b" }

2025-02-14 CS 331 Spring 2025

*

+ b

a 2

+

a 2

23

Recursive-Descent Parsing
Back to Example #3: Expressions — Representing ASTs [3/6]

It is better to describe our ASTs in a way that does not require tree
drawings. So we specify the format of an AST for each line in
our grammar. (Lines are numbered so we can refer to them.)

Grammar 3b

1. expr → term { (“+” | “-”) term }

2. term → factor { (“*” | “/”) factor }

3. factor → ID

4. | NUMLIT

5. | “(” expr “)”

1. If there is only a term, then the AST for the expr is the AST for
the term. Otherwise, the AST is { OO, AAA, BBB }, where
OO is the string form of the last operator, AAA is the AST for
everything before it, and BBB is the AST for the last term.

2025-02-14 CS 331 Spring 2025 24

Recursive-Descent Parsing
Back to Example #3: Expressions — Representing ASTs [4/6]

A term is handled similarly.

Grammar 3b

1. expr → term { (“+” | “-”) term }

2. term → factor { (“*” | “/”) factor }

3. factor → ID

4. | NUMLIT

5. | “(” expr “)”

2. If there is only a factor, then the AST for the term is the AST
for the factor. Otherwise, the AST is { OO, AAA, BBB },
where OO is the string form of the last operator, AAA is the
AST for everything before it, and BBB is the AST for the last
factor.

2025-02-14 CS 331 Spring 2025 25

Recursive-Descent Parsing
Back to Example #3: Expressions — Representing ASTs [5/6]

A factor has multiple options.

Grammar 3b

1. expr → term { (“+” | “-”) term }

2. term → factor { (“*” | “/”) factor }

3. factor → ID

4. | NUMLIT

5. | “(” expr “)”

3. AST for the factor: string form of the ID.

4. AST for the factor: string form of the NUMLIT.

5. AST for the factor: AST for the expr.

2025-02-14 CS 331 Spring 2025 26

Recursive-Descent Parsing
Back to Example #3: Expressions — Representing ASTs [6/6]

Grammar 3b

1. expr → term { (“+” | “-”) term }

2. term → factor { (“*” | “/”) factor }

3. factor → ID

4. | NUMLIT

5. | “(” expr “)”

Applying the various rules, the AST for (a + 2) * b is

{ "*", { "+", "a", "2" }, "b" }

Each parsing function can now return a pair: a Boolean and an
AST. The Boolean indicates a correct parse, as before. The AST
is only valid if the Boolean is true, in which case it will be in the
specified format.

2025-02-14 CS 331 Spring 2025

Same as before, but
this time we did not
need to draw a tree.

27

Recursive-Descent Parsing
Back to Example #3: Expressions — Better ASTs [1/3]

Our ASTs are not quite good enough. When a compiler or
interpreter uses an AST, it needs to know what kind of entity
each node represents. The parser knows this; we can include
the information in each node.

We have three kinds of nodes: binary operators, simple variables,
and numeric literals.

2025-02-14 CS 331 Spring 2025

*

+ b

a 2

binOp: *

binOp: + simpleVar: b

simpleVar: a numLit: 2

28

Recursive-Descent Parsing
Back to Example #3: Expressions — Better ASTs [2/3]

In the Lua form of our AST, replace each string with a two-item

array. The first item in the array will be one of three constants:
BIN_OP, SIMPLE_VAR, or NUMLIT_VAL. The second item will be
the string form of the lexeme.

 "/" { BIN_OP, "/" }

 "abc" { SIMPLE_VAR, "abc" }

 "123" { NUMLIT_VAL, "123" }

So the AST for a + 2 changes as shown below.

 { "+", "a", "2" } {{ BIN_OP, "+" },

 { SIMPLE_VAR, "a" },

 { NUMLIT_VAL, "2" }}

2025-02-14 CS 331 Spring 2025 29

Recursive-Descent Parsing
Back to Example #3: Expressions — Better ASTs [3/3]

 "/" { BIN_OP, "/" }

 "abc" { SIMPLE_VAR, "abc" }

 "123" { NUMLIT_VAL, "123" }

TO DO

▪ Based on Grammar 3b, write a Predictive Recursive-Descent parser
that constructs and returns these improved ASTs.

2025-02-14 CS 331 Spring 2025

Done. See rdparser3.lua

& use_rdparser3.lua.

30

	Slide 1: Recursive-Descent Parsing
	Slide 2: Unit Overview Lexing & Parsing
	Slide 3
	Slide 4: Review Introduction to Lexing & Parsing
	Slide 5: Review Recursive-Descent Parsing [1/4]
	Slide 6: Review Recursive-Descent Parsing [2/4]
	Slide 7: Review Recursive-Descent Parsing [3/4]
	Slide 8: Review Recursive-Descent Parsing [4/4]
	Slide 9
	Slide 10: Recursive-Descent Parsing Transforming Grammars [1/3]
	Slide 11: Recursive-Descent Parsing Transforming Grammars [2/3]
	Slide 12: Recursive-Descent Parsing Transforming Grammars [3/3]
	Slide 13: Recursive-Descent Parsing Back to Example #3: Expressions — Left-Associativity [1/5]
	Slide 14: Recursive-Descent Parsing Back to Example #3: Expressions — Left-Associativity [2/5]
	Slide 15: Recursive-Descent Parsing Back to Example #3: Expressions — Left-Associativity [3/5]
	Slide 16: Recursive-Descent Parsing Back to Example #3: Expressions — Left-Associativity [4/5]
	Slide 17: Recursive-Descent Parsing Back to Example #3: Expressions — Left-Associativity [5/5]
	Slide 18: Recursive-Descent Parsing Back to Example #3: Expressions — ASTs [1/4]
	Slide 19: Recursive-Descent Parsing Back to Example #3: Expressions — ASTs [2/4]
	Slide 20: Recursive-Descent Parsing Back to Example #3: Expressions — ASTs [3/4]
	Slide 21: Recursive-Descent Parsing Back to Example #3: Expressions — ASTs [4/4]
	Slide 22: Recursive-Descent Parsing Back to Example #3: Expressions — Representing ASTs [1/6]
	Slide 23: Recursive-Descent Parsing Back to Example #3: Expressions — Representing ASTs [2/6]
	Slide 24: Recursive-Descent Parsing Back to Example #3: Expressions — Representing ASTs [3/6]
	Slide 25: Recursive-Descent Parsing Back to Example #3: Expressions — Representing ASTs [4/6]
	Slide 26: Recursive-Descent Parsing Back to Example #3: Expressions — Representing ASTs [5/6]
	Slide 27: Recursive-Descent Parsing Back to Example #3: Expressions — Representing ASTs [6/6]
	Slide 28: Recursive-Descent Parsing Back to Example #3: Expressions — Better ASTs [1/3]
	Slide 29: Recursive-Descent Parsing Back to Example #3: Expressions — Better ASTs [2/3]
	Slide 30: Recursive-Descent Parsing Back to Example #3: Expressions — Better ASTs [3/3]

