
State-Machine Lexing
The Basics of Syntax Analysis
Recursive-Descent Parsing

CS 331 Programming Languages

Lecture Slides

Monday, February 10, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

continued

2025-02-10 CS 331 Spring 2025

Unit Overview
Lexing & Parsing

Topics

▪ Introduction to lexing & parsing

▪ The basics of lexical analysis

▪ State-machine lexing

▪ The basics of syntax analysis

▪ Recursive-descent parsing

▪ Shift-reduce parsing

▪ Parsing wrap-up





(part)
Lexical Analysis (Lexing)

Syntax Analysis (Parsing)

2

Review

2025-02-10 CS 331 Spring 2025 3

Review
Introduction to Lexing & Parsing

Two steps:

▪ Lexical analysis (lexing)

▪ Syntax analysis (parsing)

The output of a parser is typically an abstract syntax tree (AST).
Specifications of these vary.

2025-02-10 CS 331 Spring 2025

Parser
Lexeme
Stream

AST or
Error

Lexer
Character

Stream

return (*dp + 2.6); //x returnStmt

id: dp

return (*dp + 2.6); //x

binOp: +

unOp: * numLit: 2.6

key

punct

id op num
lit

op

punct

4

Review
State-Machine Lexing [1/2]

We have written a lexer as Lua module lexer.

Internally, our lexer runs as a state machine.

▪ A state machine has a current state, which it must store.

▪ At each step, a state machine looks at the state and the input. It
then decides what state to go to next.

▪ It may make other decisions as well.

As we write a state machine, an important question is when do we
add a new state?

 Two situations can be handled by the same state if they
will react identically to all future input.

2025-02-10 CS 331 Spring 2025

See lexer.lua.

5

Review
State-Machine Lexing [2/2]

DONE

▪ Handling of all lexeme categories, all necessary states.

▪ Written in class last time: handling of all NumericLiteral and
Operator lexemes, states DIGIT, DIGDOT, DOT, PLUS, MINUS, STAR,
handling of Malformed lexemes.

▪ Written after class: comments on all state-handler functions.

lexer.lua is finished (hopefully).

2025-02-10 CS 331 Spring 2025

See lexer.lua.

6

State-Machine Lexing

2025-02-10 CS 331 Spring 2025

continued

7

State-Machine Lexing
Issues II — Look-Ahead [1/2]

With our lexical specification, it is tricky to handle “+.” and “-.”.
For example, “+.3” is a single lexeme (NumericLiteral), while
“+.x” is three lexemes: (Operator, Operator, Identifier).

There are several ways to deal with this.

▪ Backtracking. Add a state for “+.” (PLUSDOT?). If the next
character is a digit, then add it to the lexeme and go to DIGDOT;
otherwise, remove the dot from the current lexeme, back up the
pos pointer, and spit out the + operator.

▪ As above, but when removing the dot, add it to the next lexeme,
which would be saved for the next lexeme request. The pos pointer
does not need to back up. The lexer would need a new variable to
hold the partially constructed next lexeme.

▪ Multi-symbol look-ahead. If we see “.” after “+”, then peek at the
next character. If it is a digit, add the dot to the lexeme and go to
DIGDOT—even though the lexeme contains no digit yet. Otherwise,
do not add the dot to the lexeme; spit out the + operator.

2025-02-10 CS 331 Spring 2025

The strategy used
in lexer.lua.

8

State-Machine Lexing
Issues II — Look-Ahead [2/2]

Multi-symbol look-ahead is fast and easy to implement. It is a
common technique in both lexing and parsing.

CFGs are commonly classified according to the number of lexemes
of look-ahead required by some parsing method. We talk about
LL(1) grammars, LL(2) grammars, etc. More about this later.

2025-02-10 CS 331 Spring 2025 9

State-Machine Lexing
Issues II — Error Handling [1/5]

The lexical specification tells us to handle illegal characters by
forming a single character Malformed lexeme.

But is that the best way? How else might we handle this error?

In general, there are three places where a possible error condition
in a function might be dealt with.

1. Before the function. The caller can prevent the error, so that it
never happens.

2. In the function. If the function encounters an error, then it can
fix it, so the outside world never knows.

3. After the function. The function can signal the caller that an
error has occurred, leaving it to the caller to deal with.

We look at these three in turn, in the context of our lexer finding
an illegal character.

2025-02-10 CS 331 Spring 2025 10

State-Machine Lexing
Issues II — Error Handling [2/5]

A possible error condition in a function can be dealt with before
the function: the caller can prevent the error, so that it never
happens.

Applying this idea in our lexer:

A lexer generally reads text straight from a source file. To prevent
the occurrence of illegal characters would require a
preprocessing step before calling the lexer.

But that would make our lexer inconvenient to use. 

2025-02-10 CS 331 Spring 2025 11

State-Machine Lexing
Issues II — Error Handling [3/5]

A possible error condition in a function can be dealt with in the
function. If the function encounters an error, then it can fix it,
so the outside world never knows.

Applying this idea in our lexer:

The only ways a lexer might “fix” illegal characters would be to
skip them or change them to legal characters.

But that would change the definition of a syntactically correct
program. 

2025-02-10 CS 331 Spring 2025 12

State-Machine Lexing
Issues II — Error Handling [4/5]

A possible error condition in a function can be dealt with after the
function. The function can signal the caller that an error has
occurred, leaving it to the caller to deal with.

Applying this idea in our lexer:

The caller would usually be a parser. How could the lexer signal the
parser that an illegal character has been encountered?

It could raise an exception—and Lua does have exceptions. This
would require extra exception-handling code in the parser. 

Another option—the one chosen—is to extend the return values of
the lexer with an extra category: Malformed. We signal the
parser that an illegal character has occurred by returning a
Malformed lexeme.

This method has a nice advantage …

2025-02-10 CS 331 Spring 2025 13

State-Machine Lexing
Issues II — Error Handling [5/5]

A parser must check whether each lexeme is what it wants. There
must be code to deal with an unwanted lexeme.

if [lexeme is what we want] then

 [Yay!]

else

 [Uh oh, unwanted lexeme.]

end

A Malformed lexeme is always unwanted. Encountering one will
result in the “else” branch being taken, above.

That branch must be written, regardless of whether Malformed
lexemes are defined.

Result: our error signaling method requires no additional code in
the parser. ☺

2025-02-10 CS 331 Spring 2025

A Malformed lexeme will result in
this branch being executed.

14

State-Machine Lexing
Issues II — Numeric Literals [1/3]

Say our lexer is to be part of a parser for arithmetic expressions
with syntax similar to that of Java, C++, and Lua.

Observe that our lexer exhibits the following behavior.

Input: k – 4 Input: k–4

Output: Output:

 k Identifier k Identifier

 – Operator –4 NumericLiteral

 4 NumericLiteral

But the above behavior does follow our lexical specification. Does
this mean that our lexical specification is incorrect?

2025-02-10 CS 331 Spring 2025 15

State-Machine Lexing
Issues II — Numeric Literals [2/3]

Is our lexical specification incorrect?

The output of a lexer is almost never needed for its own sake;
lexing is typically just the first step in the construction of an
AST, perhaps followed by the generation of executable code.

So we cannot really look at a lexical specification in isolation and
call it correct or incorrect.

However, it is true that our lexical specification does not quite
match the PL we probably envision it to be part of. (This was
intentional, but it is based on an actual mistake I made when
writing a lexical specification some years ago.)

What can we do about this?

2025-02-10 CS 331 Spring 2025 16

State-Machine Lexing
Issues II — Numeric Literals [3/3]

Problem: k – 4 vs. k–4

Ways of Dealing with This Issue

1. Leave the lexical specification alone. Programmers will have to
insert space sometimes.

2. Do not always require maximal-munch: sometimes + or – is a one-
character Operator, regardless of what follows. This could be a
rule that the lexer applies in specified situations, or it could be
done at the caller’s request.

3. Do maximal-munch, but write the lexical specification so that a
NumericLiteral cannot begin with “+” or “–”. (If we did this, then
“–4” would be an Operator and a NumericLiteral.)

Option #3 is common. It is used in Java, C, C++, Lua, Python, and
many other major PLs.

Note that lexer.lua still follows option #1.

2025-02-10 CS 331 Spring 2025 17

The Basics of Syntax Analysis

2025-02-10 CS 331 Spring 2025 18

The Basics of Syntax Analysis
Introduction [1/2]

We have covered lexical analysis. Now we look at syntax analysis,
or parsing.

If lexing is split off as a separate step, then a parser reads a
lexeme stream. In addition, it will do the following:

▪ Determine whether the input is syntactically correct.

▪ If it is not correct, then output information about the problem.

▪ If it is correct, then output some representation of its structure,
typically an abstract syntax tree (AST).

2025-02-10 CS 331 Spring 2025

Parser
AST or
Error

returnStmt

id: dp

binOp: +

unOp: * numLit: 2.6

Lexeme
Stream

return (*dp + 2.6); //x

key

punct

id op num
lit

op

punct

Not defined
yet!

19

The Basics of Syntax Analysis
Introduction [2/2]

Syntax analysis is virtually always based on a context-free
grammar (CFG) or some similar construction.

Recall the idea of a derivation: begin with the start symbol, and
apply productions one by one, ending with a string of terminals.

CFG (start symbol: item)

item → “(” item “)”

item → value

value → NUMLIT

value → “*” “-” “*”

There are many different parsing methods based on CFGs. Each is
usable with a large number of CFGs—but generally not all CFGs.

2025-02-10 CS 331 Spring 2025

Derivation

 item

 (item)

 ((item))

 ((value))

 ((NUMLIT))

Here, NUMLIT is a
lexeme category.
On the right, the
actual string might
be something like
“((+12.34))”.

20

The Basics of Syntax Analysis
Categories of Parsers [1/3]

Parsing methods can vary a great deal, but they come in two basic
flavors: top-down and bottom-up.

Every grammar-based parser goes through the steps required to
find a derivation. (It will usually not output this derivation, or
even store it anywhere, but it must go though the steps.)

▪ A top-down parser goes through the derivation from top to
bottom, beginning with the start symbol, expanding nonterminals
as it goes, and ending with the string to be derived (the program?).

▪ A bottom-up parser goes through the derivation from bottom to
top, beginning with the string to be derived (the program?),
reducing substrings to nonterminals as it goes, and ending with
the start symbol.

2025-02-10 CS 331 Spring 2025 21

The Basics of Syntax Analysis
Categories of Parsers [2/3]

Top-down parsers usually expand the leftmost nonterminal first.
Thus, they usually produce leftmost derivations.

Top-down parsing code is sometimes hand-coded and sometimes
automatically generated.

We will look at a top-down parsing method called Predictive
Recursive Descent. Assignment 4 will involve writing a
Predictive Recursive-Descent parser.

2025-02-10 CS 331 Spring 2025 22

The Basics of Syntax Analysis
Categories of Parsers [3/3]

Bottom-up parsers usually reduce to the leftmost nonterminal first.
But thinking of the derivation from top to bottom, this would
mean that the leftmost nonterminal is expanded last; the
rightmost nonterminal is expanded first, resulting in a rightmost
derivation.

Bottom-up parsing code is almost always automatically generated.

We will look at a bottom-up parsing method called Shift-Reduce.
You will not be required to write a Shift-Reduce parser.

2025-02-10 CS 331 Spring 2025 23

The Basics of Syntax Analysis
Categories of Grammars [1/4]

As a rule, fast parsing methods are not capable of handling all
CFGs. For each kind of parser, there is a category of grammars
that such parsers can handle.

A CFG that can be handled by a Predictive Recursive-Descent
parser that bases its decisions on k input
symbols is an LL(k) grammar. The name
LL comes from the fact that these parsers
read their input Left-to-right and go through the steps
necessary to construct Leftmost derivations.

So if a Predictive Recursive-Descent parser is based on a CFG, and
it does not do multi-symbol look-ahead, then the grammar it
uses must be an LL(1) grammar. Over the next few days we
will discuss LL(1) grammars further.

2025-02-10 CS 331 Spring 2025

k is a number. Here,
symbols are lexemes.

24

The Basics of Syntax Analysis
Categories of Grammars [2/4]

Here is a simple example. Consider the following grammar.

S → aa

S → ab

The above grammar is not LL(1), since we cannot decide which
production to use based only on one input symbol. However,
this grammar is LL(2).

It is not hard to transform this grammar to an LL(1) grammar that
generates the same language.

S → aX

X → a

X → b

2025-02-10 CS 331 Spring 2025

Q. The goal is to write a parser.
 Why are we discussing this?

A. As we will see, similar issues
 arise when we write a parser
 for a PL with left-associative
 binary operators [so a*b*c
 means (a*b)*c]—i.e., nearly
 every PL.

25

The Basics of Syntax Analysis
Categories of Grammars [3/4]

A grammar that can be handled by a Shift-Reduce parser that
bases its decisions on k input symbols is an LR(k) grammar.
The name LR comes from the fact that these parsers
read their input Left-to-right and go through the steps
necessary to construct Rightmost derivations.

So if a Shift-Reduce parser is based on a CFG, and it does not do
multi-symbol look-ahead, then the grammar it uses must be an
LR(1) grammar.

2025-02-10 CS 331 Spring 2025 26

The Basics of Syntax Analysis
Categories of Grammars [4/4]

It turns out that every LL(1) grammar is an LR(1) grammar, but
there are LR(1) grammars that are not LL(1) grammars (for
example, the non-LL(1) grammar from 2 slides back).

This diagram shows the relationship between grammar categories.

2025-02-10 CS 331 Spring 2025

All Grammars

LR(1) Grammars

CFGs

LL(1) Grammars

Regular

Grammars

27

Recursive-Descent Parsing

2025-02-10 CS 331 Spring 2025 28

Recursive-Descent Parsing
Introduction

Now we look at a parsing method called Recursive Descent.

▪ A top-down parsing method.

▪ Sometimes hand-coded and sometimes automatically generated.

▪ Has been known for decades. Still in common use.

When we write a Recursive-Descent parser, we choose what
functions to write based on our grammar. Since our parser is
tailored for a specific grammar, this is not code we can write
once and use for many grammars. A different grammar requires
writing a new parser.

2025-02-10 CS 331 Spring 2025 29

Recursive-Descent Parsing
How It Works [1/2]

A Recursive-Descent parser consists of a number of parsing
functions. There is one parsing function for each nonterminal.
Each parsing function is responsible for parsing all strings that
its nonterminal can be expanded into.

So the parsing function corresponding to the start symbol is the
one we call to parse the entire input (program?).

The code for a parsing function is essentially a translation into code
of the right-hand side of the production for the nonterminal.

▪ A nonterminal in the right-hand side becomes a call to its parsing
function—so the parsing functions are mutually recursive.

▪ A terminal in the right-hand side becomes a check that the input
string contains the proper lexeme.

2025-02-10 CS 331 Spring 2025 30

Recursive-Descent Parsing
How It Works [2/2]

Suppose a Recursive-Descent parser is applying a production, but
the input does not fit its right-hand side. There are two options:

1. Backtrack. Try another production.

2. Give up. Flag the input as syntactically incorrect.

Option #1 can result in a parser that is far too slow.

But option #2 is only correct if the chosen production was the right
one. So we must be able to predict which production to use
based on the next lexeme (more lexemes if we do look-ahead).
This restricts which grammars we can use.

A parser that uses option #2 is said to be predictive. Again, the
CFGs for which we can write a correct Predictive Recursive-
Descent parser that bases its decisions on k lexemes are called
LL(k) grammars.

2025-02-10 CS 331 Spring 2025 31

Recursive-Descent Parsing
Example #1: Simple [1/5]

Let’s write a Predictive Recursive-Descent parser based on the
following CFG.

Grammar 1

item → “(” item “)”

item → value

value → NUMLIT

value → “*” “-” “*”

The start symbol is item.

NUMLIT represents the NumericLiteral category from our lexer.

Our parser will be written in Lua. It will take input from our in-class
lexer (module lexer).

2025-02-10 CS 331 Spring 2025 32

Recursive-Descent Parsing
Example #1: Simple [2/5]

A Recursive-Descent parser has one parsing function for each
nonterminal. It is appropriate to begin by combining productions
with a common left-hand side.

Grammar 1

item → “(” item “)”

item → value

value → NUMLIT

value → “*” “-” “*”

2025-02-10 CS 331 Spring 2025

Grammar 1a

item → “(” item “)”

 | value

value → NUMLIT

 | “*” “-” “*”

33

Recursive-Descent Parsing
Example #1: Simple [3/5]

Grammar 1a

item → “(” item “)”

 | value

value → NUMLIT

 | “*” “-” “*”

Next we turn each production into code for a function.

Let’s name each parsing function after its nonterminal. So the
parsing function for item will be parse_item. And the parsing
function for value will be parse_value.

A parser typically outputs either an AST or an error message. But
for now, our parser will simply return true or false, depending
on whether the input is syntactically correct. Eventually, we will
write code to construct an AST.

2025-02-10 CS 331 Spring 2025 34

Recursive-Descent Parsing
Example #1: Simple [4/5]

I have written a framework for a Recursive-Descent parser that
uses our lexer. This is a Lua module exporting a function parse.

In a parsing function (e.g., parse_item or parse_value), the
current lexeme & category are in variables lexstr & lexcat,
respectively. When the function starts, a lexeme is already in
these variables. To move to the next lexeme, call advance.

Pass function matchCat a lexeme category (e.g., lexer.NUMLIT). If
the current lexeme is in this category, then it sets variable
matched to the string form of the lexeme, calls advance, and
returns true; otherwise, it returns false—with no advance call.

matchString is similar, but it takes a string to match (e.g., ">=").

I have written a simple program that uses
this parser.

2025-02-10 CS 331 Spring 2025

See rdparser1.lua &

use_rdparser1.lua.

35

Recursive-Descent Parsing
Example #1: Simple [5/5]

Grammar 1a

item → “(” item “)”

 | value

value → NUMLIT

 | “*” “-” “*”

TO DO

▪ Write a Predictive Recursive-Descent parser based on Grammar 1a.

2025-02-10 CS 331 Spring 2025

Done. See rdparser1.lua.

36

Recursive-Descent Parsing
Handling Incorrect Input [1/4]

What output does our parser give for each of the following inputs?

1. ""

2. "123"

3. "xyz"

4. "*-*"

5. "((+12.34))"

Q. Are these outputs what we want them to be?

A. For all but #9 and #10, the output is what we expect. But the
parser says those two are correct. Obviously, they are not.

I claim, however, that this is not really a parser bug. Read on …

2025-02-10 CS 331 Spring 2025

6. "(((((* - *)))))"

7. "(1,2,3)"

8. "(((42))"

9. "((42)))"

10. "1,2,3"

37

Recursive-Descent Parsing
Handling Incorrect Input [2/4]

Our parser says the following are both syntactically correct:

▪ "((42)))"

▪ "1,2,3"

Why?

Function parse_item is called to parse the entire input. It is also
called, recursively, to parse an item between parentheses. When
the latter invocation of the function sees “)” following a correct
parse, it must simply return, assuming that the “)” is handled
by its caller.

So parse_item sees the first string above as a syntactically correct
string “((42))” followed by extra stuff: “)”.

The second string is similar: a correct “1” followed by extra “,2,3”.

2025-02-10 CS 331 Spring 2025 38

Recursive-Descent Parsing
Handling Incorrect Input [3/4]

Our parsing functions are acting correctly. But the parser is not
giving us the information we need. What can we do about this?

One common solution is to add another lexeme category: end of
input. There is standard notation for this: $. Then add a new
start symbol, and augment the grammar with one more
production, of the form newStartSymbol → oldStartSymbol $.

The following would be our new grammar, with start symbol all.

Grammar 1b

all → item $

item → “(” item “)”

 | value

value → NUMLIT

 | “*” “-” “*”

2025-02-10 CS 331 Spring 2025

This idea will not
be used in our
current parser.

39

Recursive-Descent Parsing
Handling Incorrect Input [4/4]

Another solution is to add an extra check at the end of parsing, to
see whether all lexemes have been read. If we do this, then the
grammar is unchanged, and the parsing functions are the same.

A correct parse of the entire input then requires two conditions:

▪ The parsing function for the start symbol indicates a correct parse.

▪ All lexemes have been read.

The above solution works better with the interactive environment
that you will use with your interpreter. So I will be using this
solution in all of our Recursive-Descent parsers.

TO DO

▪ Modify rdparser1.lua to implement the above idea.

▪ Modify use_rdparser1.lua so that it
uses the new information.

2025-02-10 CS 331 Spring 2025

Done. See rdparser1.lua

& use_rdparser1.lua.

40

Recursive-Descent Parsing
TO BE CONTINUED …

Recursive-Descent Parsing will be continued next time.

2025-02-10 CS 331 Spring 2025 41

	Slide 1: State-Machine Lexing The Basics of Syntax Analysis Recursive-Descent Parsing
	Slide 2: Unit Overview Lexing & Parsing
	Slide 3
	Slide 4: Review Introduction to Lexing & Parsing
	Slide 5: Review State-Machine Lexing [1/2]
	Slide 6: Review State-Machine Lexing [2/2]
	Slide 7
	Slide 8: State-Machine Lexing Issues II — Look-Ahead [1/2]
	Slide 9: State-Machine Lexing Issues II — Look-Ahead [2/2]
	Slide 10: State-Machine Lexing Issues II — Error Handling [1/5]
	Slide 11: State-Machine Lexing Issues II — Error Handling [2/5]
	Slide 12: State-Machine Lexing Issues II — Error Handling [3/5]
	Slide 13: State-Machine Lexing Issues II — Error Handling [4/5]
	Slide 14: State-Machine Lexing Issues II — Error Handling [5/5]
	Slide 15: State-Machine Lexing Issues II — Numeric Literals [1/3]
	Slide 16: State-Machine Lexing Issues II — Numeric Literals [2/3]
	Slide 17: State-Machine Lexing Issues II — Numeric Literals [3/3]
	Slide 18
	Slide 19: The Basics of Syntax Analysis Introduction [1/2]
	Slide 20: The Basics of Syntax Analysis Introduction [2/2]
	Slide 21: The Basics of Syntax Analysis Categories of Parsers [1/3]
	Slide 22: The Basics of Syntax Analysis Categories of Parsers [2/3]
	Slide 23: The Basics of Syntax Analysis Categories of Parsers [3/3]
	Slide 24: The Basics of Syntax Analysis Categories of Grammars [1/4]
	Slide 25: The Basics of Syntax Analysis Categories of Grammars [2/4]
	Slide 26: The Basics of Syntax Analysis Categories of Grammars [3/4]
	Slide 27: The Basics of Syntax Analysis Categories of Grammars [4/4]
	Slide 28
	Slide 29: Recursive-Descent Parsing Introduction
	Slide 30: Recursive-Descent Parsing How It Works [1/2]
	Slide 31: Recursive-Descent Parsing How It Works [2/2]
	Slide 32: Recursive-Descent Parsing Example #1: Simple [1/5]
	Slide 33: Recursive-Descent Parsing Example #1: Simple [2/5]
	Slide 34: Recursive-Descent Parsing Example #1: Simple [3/5]
	Slide 35: Recursive-Descent Parsing Example #1: Simple [4/5]
	Slide 36: Recursive-Descent Parsing Example #1: Simple [5/5]
	Slide 37: Recursive-Descent Parsing Handling Incorrect Input [1/4]
	Slide 38: Recursive-Descent Parsing Handling Incorrect Input [2/4]
	Slide 39: Recursive-Descent Parsing Handling Incorrect Input [3/4]
	Slide 40: Recursive-Descent Parsing Handling Incorrect Input [4/4]
	Slide 41: Recursive-Descent Parsing TO BE CONTINUED …

