
State-Machine Lexing

CS 331 Programming Languages

Lecture Slides

Friday, February 7, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

continued

2025-02-07 CS 331 Spring 2025

Unit Overview
Lexing & Parsing

Topics

▪ Introduction to lexing & parsing

▪ The basics of lexical analysis

▪ State-machine lexing

▪ The basics of syntax analysis

▪ Recursive-descent parsing

▪ Shift-reduce parsing

▪ Parsing wrap-up





(part)
Lexical Analysis (Lexing)

Syntax Analysis (Parsing)

2

Review

2025-02-07 CS 331 Spring 2025 3

Review
Introduction to Lexing & Parsing

Two steps:

▪ Lexical analysis (lexing)

▪ Syntax analysis (parsing)

The output of a parser is typically an abstract syntax tree (AST).
Specifications of these vary.

2025-02-07 CS 331 Spring 2025

Parser
Lexeme
Stream

AST or
Error

Lexer
Character

Stream

return (*dp + 2.6); //x returnStmt

id: dp

return (*dp + 2.6); //x

binOp: +

unOp: * numLit: 2.6

key

punct

id op num
lit

op

punct

4

Review
State-Machine Lexing — Design

We are writing a Lua module lexer, a hand-coded state-machine
lexer, based on the In-Class Lexical Specification.

Internally, our lexer runs as a state machine.

▪ A state machine has a current state. This might simply be a
number. Code that runs as a state machine will need to store this.

▪ The machine proceeds in a series of steps. At each step, it looks at
the state and the input—the current character, at least for now. It
then decides what state to go to next.

▪ Based on the state and the input, our state machine may also make
other decisions. Examples might include declaring a lexeme to be
complete, or setting the category of a lexeme.

2025-02-07 CS 331 Spring 2025 5

Review
State-Machine Lexing — Coding a State Machine I [1/2]

Here is a DFA that recognizes
an Identifier-or-Keyword.
But it is not quite appropriate
for what we need to do.

▪ It determines whether the
entire input is an
Identifier-or-Keyword.
But we need find these followed by other lexemes.

▪ We need to recognize other categories of lexemes as well.

Here is an almost-DFA that
better expresses our process.
I have named some states.

2025-02-07 CS 331 Spring 2025

Other

Any

Other

Letter or
underscore Letter,

underscore,
or digit

Start

START LETTER

Start

Other Other

DONE

Return previous
chars as Id-or-Key

lexeme

Handle other lexeme
categories

Letter or
underscore Letter,

underscore,
or digit

6

Review
State-Machine Lexing — Coding a State Machine I [2/2]

Written So Far

▪ Code to handle Identifier and Keyword lexemes.

▪ Function skipToNextLexeme (written after class).

▪ Descriptions of invariants (written after class).

2025-02-07 CS 331 Spring 2025

See lexer.lua.

7

State-Machine Lexing

2025-02-07 CS 331 Spring 2025

continued

8

State-Machine Lexing
Issues I — Adding a State

As we write a state machine, an important question is when do we
add a new state?

A guiding principle:

 Two situations can be handled by the same state if they
will react identically to all future input.

For example, if we have read “a”, then we are in state LETTER,
since we have read a single letter.

Next, we read “3”. Are we still in state LETTER, or not?

Applying the above principle: yes, we are. Because whatever
follows “a3”, we handle it the same as we would if it followed
“a”. For example, “a3_xq6” is an identifier; and so is “a_xq6”.

2025-02-07 CS 331 Spring 2025 9

State-Machine Lexing
Issues I — Invariants

We need to be careful about invariants: statements that are
always true at a particular point in a program.

What do we expect to be true about variables (pos, in particular)
when our iterator function is called? Whatever this is, we need
to ensure that it is true when this function returns.

When invariants are not obvious, it is a good idea to document
them using comments or assertions.

2025-02-07 CS 331 Spring 2025 10

State-Machine Lexing
Issues I — End of Input

We need to be clear about what happens when we read past the
end of the input.

We use the Lua string function sub to get single characters out of
the input string. This function returns the empty string when it
is asked to read past the end. And an empty string will always
result in false when passed to a character-testing function, or
when equality-compared with any single character. So anything
we check about a past-the-end character will be false.

s = "abcdefgh"

z1 = s:sub(2) -- from position 2 to end: "bcdefgh"

z2 = s:sub(2, 4) -- positions 2 to 4: "bcd"

z3 = s:sub(2, 2) -- single character: "b"

z4 = s:sub(91, 99) -- Past end of string, so empty: ""

2025-02-07 CS 331 Spring 2025 11

State-Machine Lexing
Issues I — Skipping

Consider function skipToNextLexeme.

The point of this function is take pos to the beginning of the next
lexeme—or the end of the input if there is no next lexeme.

So skipToNextLexeme needs to skip comments as well. But it is
not enough to skip a single comment. We also need to skip
whitespace-comment-whitespace-comment-whitespace, etc.

abc

/* comment #1 */ /* comment #2

*/

/* comment #3 */def

2025-02-07 CS 331 Spring 2025

After reading this lexeme,
calling skipToNextLexeme()
needs to take us to the
beginning of this lexeme.

12

State-Machine Lexing
Coding a State Machine II

TO DO

▪ Write code to handle other lexeme categories.

▪ Test whether this code works.

Written in class:

▪ Handling of NumericLiteral lexemes, including states DIGIT,
DIGDOT, DOT, PLUS, MINUS.

▪ Handling of illegal characters & Malformed lexemes.

▪ Handling of all Operator lexemes, including state STAR.

Written after class:

▪ Comments on all state-handler functions.

lexer.lua is now finished—hopefully.

2025-02-07 CS 331 Spring 2025

Done. See lexer.lua.

13

State-Machine Lexing
TO BE CONTINUED …

State-Machine Lexing will be continued next time.

2025-02-07 CS 331 Spring 2025 14

	Slide 1: State-Machine Lexing
	Slide 2: Unit Overview Lexing & Parsing
	Slide 3
	Slide 4: Review Introduction to Lexing & Parsing
	Slide 5: Review State-Machine Lexing — Design
	Slide 6: Review State-Machine Lexing — Coding a State Machine I [1/2]
	Slide 7: Review State-Machine Lexing — Coding a State Machine I [2/2]
	Slide 8
	Slide 9: State-Machine Lexing Issues I — Adding a State
	Slide 10: State-Machine Lexing Issues I — Invariants
	Slide 11: State-Machine Lexing Issues I — End of Input
	Slide 12: State-Machine Lexing Issues I — Skipping
	Slide 13: State-Machine Lexing Coding a State Machine II
	Slide 14: State-Machine Lexing TO BE CONTINUED …

