
The Basics of Lexical Analysis
State-Machine Lexing

CS 331 Programming Languages

Lecture Slides

Wednesday, February 5, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

2025-02-05 CS 331 Spring 2025

Unit Overview
The Lua Programming Language

Topics

▪ Introduction to survey of programming languages

▪ PL feature: compilation & interpretation

▪ PL category: dynamic PLs

▪ Introduction to Lua

▪ Lua: fundamentals

▪ Lua: modules

▪ Lua: objects

▪ Lua: advanced flow

















2

Review

2025-02-05 CS 331 Spring 2025 3

Review
Lua: Advanced Flow — Coroutines

A coroutine is a function that can temporarily
give up control (yield) at any point, and then
later be resumed. Each time a coroutine
temporarily gives up control, it may pass one
or more values back to its caller (it
yields these values).

Coroutines are available in a number of
programming languages. They are available
in Lua through the standard-library module
coroutine.

2025-02-05 CS 331 Spring 2025

Caller Coroutine

Resume

Yield

Return

See adv.lua.

4

Review
Lua: Advanced Flow — Custom Iterators

A Lua for-in loop uses an iterator. We can write our own function
returning a custom iterator as follows.

function MYFUNCTION(…)

local …

 local function iter_func()

 if … then

 return nil -- Iterator exhausted

 end

 …

 return … -- Return next value(s)

 end

 return iter_func

end

2025-02-05 CS 331 Spring 2025

iter_func is a closure. So we can create variables
here to store info between calls to iter_func, if
we need to.

To use this, do something like

for k in MYFUNCTION(…)
 …

end

See adv.lua.

5

2025-02-05 CS 331 Spring 2025

Unit Overview
Lexing & Parsing

Topics

▪ Introduction to lexing & parsing

▪ The basics of lexical analysis

▪ State-machine lexing

▪ The basics of syntax analysis

▪ Recursive-descent parsing

▪ Shift-reduce parsing

▪ Parsing wrap-up



6

Review
Introduction to Lexing & Parsing

Two steps:

▪ Lexical analysis (lexing)

▪ Syntax analysis (parsing)

The output of a parser is typically an abstract syntax tree (AST).
Specifications of these vary. We will cover ASTs at another time.

2025-02-05 CS 331 Spring 2025

Parser
Lexeme
Stream

AST or
Error

Lexer
Character

Stream

return (*dp + 2.6); //x returnStmt

id: dp

return (*dp + 2.6); //x

binOp: +

unOp: * numLit: 2.6

key

punct

id op num
lit

op

punct

7

2025-02-05 CS 331 Spring 2025

Unit Overview
Lexing & Parsing

Topics

▪ Introduction to lexing & parsing

▪ The basics of lexical analysis

▪ State-machine lexing

▪ The basics of syntax analysis

▪ Recursive-descent parsing

▪ Shift-reduce parsing

▪ Parsing wrap-up

Lexical Analysis (Lexing)

Syntax Analysis (Parsing)



8

The Basics of Lexical Analysis

2025-02-05 CS 331 Spring 2025 9

The Basics of Lexical Analysis
Introduction

Now we look closer at the first step: lexical analysis, or lexing. A
lexer reads a character stream and outputs a lexeme stream.

Lexemes are usually classified by category.

It is common for a lexeme category to form a regular language.
Therefore, what we know about regular languages—including
DFAs and regular expressions—is relevant to lexical analysis.

We begin by discussing some common (but not universal!) lexeme
categories.

2025-02-05 CS 331 Spring 2025

Lexer
Character

Stream
Lexeme
Stream

return (*dp + 2.6); //x return (*dp + 2.6); //x

key

punct

id op num
lit

op

punct

10

The Basics of Lexical Analysis
Lexeme Categories [1/5]

An identifier is a name that a program gives to some entity:
variable, class, function, type, namespace, etc.

In the C++ code below, the identifiers are circled.

class MyClass {

public:

 void myFunc(Type1 & aa, int bb) const

 {

 for (int ii = -37; ii <= bb; ++ii)

 {

 aa.foo();

 }

 }

};

2025-02-05 CS 331 Spring 2025 11

The Basics of Lexical Analysis
Lexeme Categories [2/5]

A keyword is an identifier-looking lexeme that has special
meaning within a programming language.

In the C++ code below, the keywords are circled.

class MyClass {

public:

 void myFunc(Type1 & aa, int bb) const

 {

 for (int ii = -37; ii <= bb; ++ii)

 {

 aa.foo();

 }

 }

};

2025-02-05 CS 331 Spring 2025 12

The Basics of Lexical Analysis
Lexeme Categories [3/5]

An operator is a word that gives an alternate method for making
something like a function call. The arguments of an operator are
called operands.

In the following code, the operators are “+=”, “*”, and “-”. The
operands of “+=” are “aaa” and “b * -c”.

aaa += b * -c;

The arity of an operator is the number of operands it has.

▪ A unary operator has one operand, like “-” in the above code.

▪ A binary operator has two operands, like “+=” and “*” in the above
code. A binary operator that is placed between its operands is an
infix operator.

▪ A ternary operator has three operands. Ternary operators are
uncommon. Lua does not have any. However, C++ and Java have
one: “… ? … : …”.

2025-02-05 CS 331 Spring 2025 13

The Basics of Lexical Analysis
Lexeme Categories [4/5]

A literal is a representation of a fixed value in source code. The
value itself is represented, not an identifier bound to the value,
and not a computation whose result is the value.

2025-02-05 CS 331 Spring 2025

C++ Literals

Literal Type

42 int

42.5 double

42.5f float

false bool

'A' char

"goat" char[]

Lua Literals

Literal Type

42.5 number

false boolean

"goat" string

[=[xy]=] string

{ 1, 2 } table

nil nil

Sometimes a literal is not a single lexeme. The Lua table
literal shown here is an example; it consists of 5 lexemes.
But every other literal on this slide is a single lexeme.

14

The Basics of Lexical Analysis
Lexeme Categories [5/5]

Punctuation is the category for the extra lexemes in a program
that do not fit into any of the previously mentioned categories.

Punctuation in C++ includes braces ({ }), semicolons (;), and the
colon (:) after public, private, or the cases in a switch-

statement.

Lexeme categories mentioned:

▪ Identifier

▪ Keyword

▪ Operator

▪ Literal

▪ Punctuation

2025-02-05 CS 331 Spring 2025 15

The Basics of Lexical Analysis
Reserved Words [1/3]

A reserved word is a word that has the general form of an
identifier, but is not allowed as an identifier.

Note that, while this is an important concept, reserved word is not
a lexeme category.

In many programming languages, the keywords and the reserved
words are the same.

However, one can imagine a variant of (say) C in which the
compiler could distinguish how a word is used, based on its
position in the code. Then there could be keywords that are not
reserved words. Something like the following might be legal.

for (for for = 10; for; --for) ;

2025-02-05 CS 331 Spring 2025 16

The Basics of Lexical Analysis
Reserved Words [2/3]

Since the 2011 Standard, C++ has had keywords that are not
reserved words; one of these is override. This has special
meaning when placed after the parentheses in a member-
function declaration, but otherwise it is a legal identifier.

So the following is legal C++, by every standard since 2011.

class Derived : public Base {

 virtual void override() override;

 // Derived member function named "override"

 // Overrides Base member function "override"

 …

2025-02-05 CS 331 Spring 2025 17

The Basics of Lexical Analysis
Reserved Words [3/3]

The programming language Fortran has no reserved words. The
following is, famously, legal code in at least some versions of
Fortran.

IF IF THEN THEN ELSE ELSE

On the other hand, there can be reserved words that are not
keywords. The Java standard specifies that const and goto are
reserved words. However, neither is a keyword. Thus, these
words cannot legally be included in a Java program at all.

2025-02-05 CS 331 Spring 2025

We will use our definitions consistently
in the class. Be aware, however, that

other definitions are used. For
example, the C++ Standard does not

refer to override as a “keyword”.

18

The Basics of Lexical Analysis
Lexer Operation

A lexer outputs a sequence of lexemes. There is usually no need to
store the whole sequence. Rather, the lexer can provide get-
next-lexeme functionality, which the parser can then use.

There are essentially three ways to write a lexer.

▪ State machine, entirely in code.

▪ State machine that uses a table (I do not mean a Lua table).

▪ Using a more advanced method, suitable for writing a parser.

Various software packages—e.g., lex—automatically generate
code for a lexer, given regular expressions describing the
lexeme categories. These use one of the above three methods.

We will write a lexer using the first method. Afterward, I expect
that it will be clear how we might have used a table instead.

2025-02-05 CS 331 Spring 2025 19

State-Machine Lexing

2025-02-05 CS 331 Spring 2025 20

State-Machine Lexing
Introduction [1/2]

We wish to write a lexer, in Lua, for a hypothetical PL. Our lexer
will be an entirely hand-coded state machine.

Lexemes are described in the In-Class Lexical Specification.

▪ All whitespace is treated the same.

▪ There might not be any delimiter between lexemes.

▪ Comments are like multiline C/C++ comments.

▪ Lexemes may be arbitrarily long. The maximal munch* rule applies.

▪ Identifiers are essentially as in C/C++.

▪ The keywords and reserved words are the same.

*The maximal munch rule says
that a lexeme is always the
longest substring beginning
from its starting point that can be interpreted as a lexeme.

2025-02-05 CS 331 Spring 2025

Lexer urn (*dp + 2.6); //x

<Munch,

munch>

21

State-Machine Lexing
Introduction [2/2]

Note that our rules for lexemes are not universal for all PLs. For
example:

▪ In Python, Haskell, JavaScript, and Go, a newline may serve as
something like an end-of-statement marker; a blank does not.

▪ In Forth, consecutive lexemes are always separated by whitespace.

▪ Lua uses different syntax for comments.

▪ Haskell has different rules for identifiers.

2025-02-05 CS 331 Spring 2025 22

State-Machine Lexing
Design [1/5]

We will write a Lua module lexer with the following interface.

▪ The module has a function lexer.lex, which is given a string—the
program—and returns an iterator that goes through lexemes.

▪ The iterator returns 2 values: string and number. The string is the
lexeme itself. The number represents the lexeme’s category.

▪ The category is an index for table lexer.catnames, whose values
will be human-readable string forms of the category names.

So the following prints text & category of all lexemes in program.

lexer = require "lexer"

for lexstr, cat in lexer.lex(program) do

 local catstr = lexer.catnames[cat]

 io.write(string.format("%-10s %s\n",

 lexstr, catstr))

end

2025-02-05 CS 331 Spring 2025

Lua Formatted Output

23

State-Machine Lexing
Design [2/5]

The function returned by lexer.lex will be a closure. Whatever
information is necessary for lexing will be stored in this closure.
(Such information is the kind of thing we might store in data
members in a C++ object.)

Internally, our lexer will run as a state machine.

▪ A state machine has a current state. This might simply be a
number. Code that runs as a state machine will need to store this.

▪ The machine proceeds in a series of steps. At each step, it looks at
the state and the input—the current character, at least for now. It
then decides what state to go to next.

▪ Based on the state and the input, our state machine may also make
other decisions. Examples might include declaring a lexeme to be
complete, or setting the category of a lexeme.

2025-02-05 CS 331 Spring 2025 24

State-Machine Lexing
Design [3/5]

A skeleton for a lexer is in lexer.lua. Our task is to finish this file,
turning it into a complete lexer for a hypothetical programming
language, whose lexical structure is specified in the In-Class
Lexeme Specification.

In Assignment 3 you will write a similar lexer, based on a different
lexeme specification. This lexer will eventually become part of
an interpreter for an actual (not hypothetical) programming
language.

I have posted a simple program that uses lexer.lua, passing a
string (“program”) and printing the lexemes found. To try it, put
lexer.lua and use_lexer.lua in the same directory, maybe
edit the string program in use_lexer.lua,
and run use_lexer.lua.

2025-02-05 CS 331 Spring 2025

See use_lexer.lua,

lexer.lua.

25

State-Machine Lexing
Design [4/5]

Variables in lexer.lua:

▪ The input is the given string: program.

▪ The index of the next character to read is stored in variable pos
(which starts at 1, since this is Lua).

▪ The state is stored in variable state, initialized as START.

▪ We build a lexeme in string lexstr, initialized as empty ("").

▪ The category of a complete lexeme is stored in category.

When a complete lexeme has been found, set state to DONE, and
set category appropriately (lexer.ID, lexer.KEY, etc.).

2025-02-05 CS 331 Spring 2025 26

State-Machine Lexing
Design [5/5]

Helper functions in lexer.lua:

▪ To add the current character to the lexeme, call add1().

▪ To skip the current character without adding it, call drop1().

▪ Lua has no character type. We represent a character as a string of
length one. I have written character-testing functions (isLetter,
isDigit, isWhitespace, isIllegal). Each takes a string. When
given a string whose length is not exactly one, each returns false.

2025-02-05 CS 331 Spring 2025 27

State-Machine Lexing
Coding a State Machine I [1/4]

Let’s handle Identifiers and Keywords—ignoring the distinction
between the two, for the moment.

An Identifier-or-Keyword begins with a letter or underscore (_).

Following this are zero or more characters, each of which is a
letter, underscore, or digit.

The diagram of a DFA that recognizes an Identifier-or-Keyword:

2025-02-05 CS 331 Spring 2025

Other

Any

Other

Letter or
underscore Letter,

underscore,
or digit

Start

28

State-Machine Lexing
Coding a State Machine I [2/4]

The above DFA is not quite appropriate for what we need to do.

▪ It determines whether the entire input is an Identifier-or-
Keyword. But we need find these followed by other lexemes.

▪ We need to handle other categories of lexemes as well.

Note that the two transitions to the lower state are qualitatively
different. For our purposes, the one on the left indicates that we
have a different lexeme category. The one on the right indicates
that an Identifier-or-Keyword lexeme is complete.

2025-02-05 CS 331 Spring 2025

Other

Any

Other

Letter or
underscore Letter,

underscore,
or digit

Start

29

State-Machine Lexing
Coding a State Machine I [3/4]

Here is an almost-DFA that better expresses our process.

▪ The right-hand box is the DONE state mentioned earlier.

▪ The left-hand box involves other states that we will discuss later.

▪ The left-hand circle is the START state.

I like to name each new state using a short string that gets the
state machine into it. I will call the right-hand circle “LETTER”.
Note that this does not mean that we have just read a letter.

2025-02-05 CS 331 Spring 2025

START LETTER

Start

Other Other

DONE

Return previous
chars as Id-or-Key

lexeme

Handle other lexeme
categories

Letter or
underscore Letter,

underscore,
or digit

30

State-Machine Lexing
Coding a State Machine I [4/4]

How to differentiate between Identifier and Keyword lexemes?

Using the state machine to do this would be complicated.

Simpler: when an Identifier-or-Keyword lexeme is complete,
compare it to each Keyword, and then set its category.

TO DO

▪ Write code to handle Identifier and Keyword lexemes.

▪ Test whether this code works.

▪ As time permits, write other parts of the module.

Written in class:

▪ Handling of Identifier, Keyword lexemes, including state LETTER.

Written after class:

▪ Function skipToNextLexeme

▪ Comments on invariants.

2025-02-05 CS 331 Spring 2025

Done.
See lexer.lua.

31

State-Machine Lexing
TO BE CONTINUED …

State-Machine Lexing will be continued next time.

2025-02-05 CS 331 Spring 2025 32

	Slide 1: The Basics of Lexical Analysis State-Machine Lexing
	Slide 2: Unit Overview The Lua Programming Language
	Slide 3
	Slide 4: Review Lua: Advanced Flow — Coroutines
	Slide 5: Review Lua: Advanced Flow — Custom Iterators
	Slide 6: Unit Overview Lexing & Parsing
	Slide 7: Review Introduction to Lexing & Parsing
	Slide 8: Unit Overview Lexing & Parsing
	Slide 9
	Slide 10: The Basics of Lexical Analysis Introduction
	Slide 11: The Basics of Lexical Analysis Lexeme Categories [1/5]
	Slide 12: The Basics of Lexical Analysis Lexeme Categories [2/5]
	Slide 13: The Basics of Lexical Analysis Lexeme Categories [3/5]
	Slide 14: The Basics of Lexical Analysis Lexeme Categories [4/5]
	Slide 15: The Basics of Lexical Analysis Lexeme Categories [5/5]
	Slide 16: The Basics of Lexical Analysis Reserved Words [1/3]
	Slide 17: The Basics of Lexical Analysis Reserved Words [2/3]
	Slide 18: The Basics of Lexical Analysis Reserved Words [3/3]
	Slide 19: The Basics of Lexical Analysis Lexer Operation
	Slide 20
	Slide 21: State-Machine Lexing Introduction [1/2]
	Slide 22: State-Machine Lexing Introduction [2/2]
	Slide 23: State-Machine Lexing Design [1/5]
	Slide 24: State-Machine Lexing Design [2/5]
	Slide 25: State-Machine Lexing Design [3/5]
	Slide 26: State-Machine Lexing Design [4/5]
	Slide 27: State-Machine Lexing Design [5/5]
	Slide 28: State-Machine Lexing Coding a State Machine I [1/4]
	Slide 29: State-Machine Lexing Coding a State Machine I [2/4]
	Slide 30: State-Machine Lexing Coding a State Machine I [3/4]
	Slide 31: State-Machine Lexing Coding a State Machine I [4/4]
	Slide 32: State-Machine Lexing TO BE CONTINUED …

