
Lua: Objects

CS 331 Programming Languages

Lecture Slides

Friday, January 31, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

2025-01-31 CS 331 Spring 2025

Unit Overview
The Lua Programming Language

Topics

▪ Introduction to survey of programming languages

▪ PL feature: compilation & interpretation

▪ PL category: dynamic PLs

▪ Introduction to Lua

▪ Lua: fundamentals

▪ Lua: modules

▪ Lua: objects

▪ Lua: advanced flow

2

Review

2025-01-31 CS 331 Spring 2025 3

Review
Introduction to Lua

The Lua PL originated in 1993 at the Pontifical Catholic University
in Rio de Janeiro, Brazil.

Lua’s source tree is small, easy to include in other projects. It is a
popular scripting language for games, LaTeX, Wikipedia, etc.

Characteristics

▪ Dynamic PL.

▪ Simple syntax. Little punctuation. Small, versatile feature set.

▪ Imperative.

▪ Insulated from machine.

▪ Typing: dynamic, implicit. Duck typing.

▪ Exactly eight types: number, string, boolean, table, function,
nil, userdata, thread.

▪ First-class functions.

▪ Function definitions are executable statements.

▪ Does eager evaluation (alternative: lazy evaluation).

2025-01-31 CS 331 Spring 2025 4

Review
Lua: Fundamentals [1/2]

A keyword is a word with special meaning in a PL.

Lua currently has 21–22 keywords: and break do else elseif
end false for function goto* if in local nil not or
repeat return then true until while

*The goto keyword was added in Lua 5.2. LuaJIT is still based on Lua 5.1.

A word that has the general form of an identifier, but is not legal
as an identifier, is a reserved word.

In Lua, the reserved words are the same as the keywords. This is
true in many other PLs as well—but not in all PLs.

2025-01-31 CS 331 Spring 2025

The boldfaced
terms on this
slide are not

specific to Lua.

5

Review
Lua: Fundamentals [2/2]

A Few Points

▪ Only values have types; variables are references to values.

▪ Function type returns a string giving the type of its argument.

▪ “..” op: string concatenation, with number-to-string conversion.

▪ When passing a single table literal or string literal to a function, we
may leave off the parentheses in the function call: foo "abc"

▪ A parameter that is not passed gets the value nil.

▪ Table literal: { [3]="three", ["x"]=true, [false]=45 }

▪ Dot syntax: if t is a table, then t["abc"] and t.abc are the same.

▪ Array: in Lua only, a table whose keys are 1, 2, …, n.

▪ Array literal: { 3, false, "abc" }

▪ Length of array arr: #arr

▪ false & nil are falsy. All other values are truthy.

▪ Iterator-based for-in loops (we write our own iterators eventually):

▪ for k, v in pairs(TABLE) do STMTS end

▪ for k, v in ipairs(TABLE_AS_ARRAY) do STMTS end

2025-01-31 CS 331 Spring 2025

For code from this

topic, see fund.lua.

6

Review
Lua: Modules — Introduction, Two Pieces

A module is an importable library that is encapsulated—handled
as a single entity by a programming language.

Lua supports modules through its tables.

Lua variables default to global, except for function
parameters and loop counters. To create a new variable that is
local to a function or module, put keyword local before its first
use. The variable is then local in future uses in that function.

local abc -- Create a new local variable named abc

The Lua standard-library function require calls a file as if it were a
function with no parameters. Use require to import a module.

quark = require "quark" -- Import module quark

2025-01-31 CS 331 Spring 2025

For code from

this topic, see

mod.lua &
mymodule.lua.

7

Review
Lua: Modules — Writing a Module

-- File quark.lua

-- Source for module quark

local quark = {} -- Table to contain module members

local function ff(n) -- ff is not exported

 …

end

function quark.gg(a, b, c) -- gg is exported

 ff(a+b+c)

end

return quark

2025-01-31 CS 331 Spring 2025

We can make a function a module member
in its definition.

Begin a module file by creating an empty
local table named after the module.

Things to export will be members.
Everything else is local.

End the module file by returning the table.

8

Review
Lua: Modules — Using a Module

To import a module, use require. Save the return value in a
variable named after the module.

quark = require "quark"

Access module members using the dot syntax for table members.

quark.gg(2, 4, 10)

gg = quark.gg -- A simpler name for quark.gg

gg(1, 2, 3)

When requiring a module inside another module, make the variable
holding the module table local. (“Everything else is local.”)

local quark = require "quark"

2025-01-31 CS 331 Spring 2025 9

Lua: Objects

2025-01-31 CS 331 Spring 2025 10

Lua: Objects
Overview

In much of the coding we do in PLs like Java and C++, we create
objects: data encapsulated with associated functions.

In Lua, we can create (the equvalent of) objects using tables. A
table can have an associated metatable; the first table is the
object, while its metatable can play the role of a class.

In the following slides, we look at how this is done. We discuss
Lua’s colon operator, which allows for a more concise syntax.
Then we cover closures: functions that, in many cases, form a
simpler substitute for objects—in Lua and in other PLs.

We will deal with a table t that has table mt as its metatable.
Think:

▪ t: object

▪ mt: class

2025-01-31 CS 331 Spring 2025 11

Lua: Objects
Metatables

A Lua table can have a metatable: another table associated with
it. We use a metatable to implement various special operations
involving the original table.

To associate a metatable with some table, use the standard library
function setmetatable.

t = { ["x"]=3 } -- A table

mt = {} -- Another table

setmetatable(t, mt) -- Now mt is the metatable of t

Special operations are implemented using functions in the
metatable whose names begin with “__” (two underscores).

2025-01-31 CS 331 Spring 2025

Some people
say, “dunder”.

12

Lua: Objects
Class & Object [1/4]

We can use a metatable to implement something like the class-
object relationship in programming languages like C++.

Let us make a table—which is to become the metatable for another
table—and put a function in it.

mt = {} -- Empty table, to be used as metatable

function mt.printYo()

 io.write("Yo!\n")

end

2025-01-31 CS 331 Spring 2025

mt will be like a class.

printYo will be like a
member function (method).

13

Lua: Objects
Class & Object [2/4]

Suppose we attempt to get the value corresponding to a key in a
table, but that key is not in the table. If this table has a
metatable, then the __index item in the metatable is called (so
it needs to be a function) with two arguments: the original table
and the missing key. The return value of this call is used in
place of the missing value from the original table.

Define __index to return the corresponding item in the metatable.

function mt.__index(tbl, key)

 return mt[key]

end

2025-01-31 CS 331 Spring 2025

In this particular implementation
of function __index, we ignore
the first parameter. But it is
always passed, regardless.

All the special function names
used in metatables begin with
two underscores (“dunder”).

14

Lua: Objects
Class & Object [3/4]

Think of mt as being like a C++ class. Now we create an “object” of
that class: another table t, whose metatable will be mt.

t = {}

setmetatable(t, mt)

Table t has no member printYo.

So doing t.printYo() invokes mt.__index(t, "printYo"),
which returns mt.printYo, which is then called.

t.printYo() -- Print "Yo!"

2025-01-31 CS 331 Spring 2025 15

Lua: Objects
Class & Object [4/4]

We can make a constructor by adding a creation function to the
metatable. We might call such a function “new”.

function mt.new()

 local obj = {}

 setmetatable(obj, mt)

 obj.x = 57 -- Set a "data member" of obj

 return obj

end

Then we can create an object by calling this constructor.

t = mt.new() -- Create new object, using mt as "class"

t.printYo() -- Print "Yo!"

2025-01-31 CS 331 Spring 2025 16

Lua: Objects
Colon Operator [1/4]

PLs like C++ make a strong distinction between ordinary functions
and member functions: a member function knows which object
it is a member of; it accesses the object via the “this” pointer.

In Lua, a function that lies in a table is not special. It is simply an
ordinary function that happens to be a value associated with
some table key. The function does not know it is in a table, and
it certainly cannot tell which table it lies in.

It is often useful for a function to have this information, since then
it can access other items in the table. We can give a function
this information by passing the table as a parameter.

-- Set the x member of the table to the given value

function t.set_x(self, val)

 self.x = val

end

2025-01-31 CS 331 Spring 2025

It is conventional to
name the passed-in
object (table) “self”.

The name “self” is
common in some other
PLs, too, e.g., Python.

17

Lua: Objects
Colon Operator [2/4]

-- Set the x member of the table to the given value

function t.set_x(self, val)

 self.x = val

end

We can call function set_x as follows.

t.set_x(t, 7) -- Set t.x to 7

But the above is redundant: t is specified twice. A shorthand uses
the colon operator. This does a dot (.), adding the value given
before the colon as an additional argument to the function,
before all the others.

t:set_x(7) -- Same as t.set_x(t, 7)

2025-01-31 CS 331 Spring 2025

The colon operator is
syntactic sugar:

syntax that does not
add new capabilities,

but makes things nicer.

18

Lua: Objects
Colon Operator [3/4]

Suppose t has metatable mt, and mt.__index is as before.

function mt.set_x(self, val)

 self.x = val

end

function mt.print_x(self)

 io.write(self.x.."\n")

end

Then we can use the colon operator to set and print t.x as follows.

t:set_x(42)

t:print_x()

2025-01-31 CS 331 Spring 2025

Now we are putting
this function in mt,
instead of in t.

19

Lua: Objects
Colon Operator [4/4]

Using metatables and the colon operator, we can do object-
oriented programming in Lua.

And we might want to put our metatable (“class”) definition in a
module stored in a separate source file.

TO DO

▪ Write the equivalent of a simple class in Lua, implemented in a
module. Include at least one data member, and write a constructor.
Make some objects of the class, and make some method (member
function) calls.

This way of designing code works fine. However, Lua—along with
some other PLs—offers functionality that we sometimes prefer
to use instead of objects: closures. We will cover these shortly.

2025-01-31 CS 331 Spring 2025

Done. See obj.lua

& pets.lua.

20

Lua: Objects
Operator Overloading [1/2]

Let us take a brief look at operator overloading in Lua.

Overloading means using a single name for multiple things.

Overloading is available in many PLs. It is typically applied to
functions, since different functions with the same name can
often be distinguished by their parameters or return values.

For example, in C++, we can overload a function name based on
the number, types, and passing methods of its parameters.

void myFunc(double);

void myFunc(int, const vector<int> &);

Operator overloading means applying overloading to operators.

2025-01-31 CS 331 Spring 2025 21

Lua: Objects
Operator Overloading [2/2]

Lua allows for operator overloading using metatables. Suppose the
first operand of an operator is a table, and that table has a
metatable. Then the appropriate special function in the
metatable is called, with the operand(s) as its argument(s).

For example, the special function name for the binary “+” operator
is __add.

x = t + t2

If t is a table with metatable mt, then the above code does
mt.__add(t, t2), setting x to the return value.

Other operators have other special function names. See the Lua
Reference Manual for a list of all of them.

2025-01-31 CS 331 Spring 2025

See obj.lua.

22

Lua: Objects
Closures [1/5]

A closure is a function that carries with it a reference to or copy of
(part of) the environment in which it was created. Some of the
things we might do with an object in a traditional C++/Java OO
style can be done more easily and cleanly using a closure.

Here is a Lua function that returns a closure.

-- multiply

-- Return function that multiplies by the given k.

function multiply(k)

 local function doit(x)

 return k*x

 end

 return doit

end

2025-01-31 CS 331 Spring 2025

Consider: what is k?

23

Lua: Objects
Closures [2/5]

-- multiply

-- Return function that multiplies by the given k.

function multiply(k)

 local function doit(x)

 return k*x

 end

 return doit

end

Function doit is an ordinary function that returns its parameter
multiplied by k. But what is k? It is the parameter of multiply
when this instance of doit was created. The return value of
multiply is a closure, since it contains a copy of the k that was
passed into this particular call to multiply.

2025-01-31 CS 331 Spring 2025

What is k?

24

Lua: Objects
Closures [3/5]

If we call multiply several times, we can get closures with
different values of k.

times2 = multiply(2) -- Times-2 function

triple = multiply(3) -- Times-3 function

io.write(times2(7).."\n"); -- Prints "14"

io.write(triple(10).."\n"); -- Prints "30"

2025-01-31 CS 331 Spring 2025

Strictly speaking, all Lua
functions are closures.

However, this only matters
when a function is called in an

environment different from
that in which it was created.

25

Lua: Objects
Closures [4/5]

Following traditional OO design principles, we could implement the
functionality of multiply by creating objects, each with a data
member k. We could set the value of k in a constructor, and
then use it in a member function mult.

But closures are simpler. So the existence of closures means we
have less need for objects. In particular, if an object exists
primarily to support a single method (member function),
then we may wish to use a closure instead.

Closures are found in a number of PLs. For example, closures were
introduced into C++ in the 2011 Standard, in the form of
lambda functions.

2025-01-31 CS 331 Spring 2025

See closure.cpp.

26

Lua: Objects
Closures [5/5]

TO DO

▪ Redo the “class” written earlier using closures.

2025-01-31 CS 331 Spring 2025

Done. See obj.lua.

27

	Slide 1: Lua: Objects
	Slide 2: Unit Overview The Lua Programming Language
	Slide 3
	Slide 4: Review Introduction to Lua
	Slide 5: Review Lua: Fundamentals [1/2]
	Slide 6: Review Lua: Fundamentals [2/2]
	Slide 7: Review Lua: Modules — Introduction, Two Pieces
	Slide 8: Review Lua: Modules — Writing a Module
	Slide 9: Review Lua: Modules — Using a Module
	Slide 10
	Slide 11: Lua: Objects Overview
	Slide 12: Lua: Objects Metatables
	Slide 13: Lua: Objects Class & Object [1/4]
	Slide 14: Lua: Objects Class & Object [2/4]
	Slide 15: Lua: Objects Class & Object [3/4]
	Slide 16: Lua: Objects Class & Object [4/4]
	Slide 17: Lua: Objects Colon Operator [1/4]
	Slide 18: Lua: Objects Colon Operator [2/4]
	Slide 19: Lua: Objects Colon Operator [3/4]
	Slide 20: Lua: Objects Colon Operator [4/4]
	Slide 21: Lua: Objects Operator Overloading [1/2]
	Slide 22: Lua: Objects Operator Overloading [2/2]
	Slide 23: Lua: Objects Closures [1/5]
	Slide 24: Lua: Objects Closures [2/5]
	Slide 25: Lua: Objects Closures [3/5]
	Slide 26: Lua: Objects Closures [4/5]
	Slide 27: Lua: Objects Closures [5/5]

