
Lua: Fundamentals
Lua: Modules

CS 331 Programming Languages

Lecture Slides

Wednesday, January 29, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

2025-01-29 CS 331 Spring 2025

Unit Overview
The Lua Programming Language

Topics

▪ Introduction to survey of programming languages

▪ PL feature: compilation & interpretation

▪ PL category: dynamic PLs

▪ Introduction to Lua

▪ Lua: fundamentals

▪ Lua: modules

▪ Lua: objects

▪ Lua: advanced flow

2

Review

2025-01-29 CS 331 Spring 2025 3

Review
PL Category: Dynamic PLs

Script: program associated with a software package, used to
extend functionality, automate operations, or customize. Written
in the package’s scripting language.

Out of early shell scripting languages and associated text-
processing tools grew the full-featured PL Perl (1987).

Similar PLs: Python (1991), Lua (1993), Ruby, JavaScript, and
PHP (1995). These are dynamic programming languages.

Typical Characteristics

▪ Dynamic typing (types determined & checked at runtime).

▪ Just about everything is modifiable at runtime.

▪ Little text overhead in code.

▪ High-level.

▪ A batteries-included approach.

▪ Imperative and block-structured, with support for OOP.

▪ Mostly interpreted, with compilation to byte code as an initial step.

2025-01-29 CS 331 Spring 2025 4

Review
Introduction to Lua — History, Characteristics

The Lua PL originated in 1993 at the Pontifical Catholic University
in Rio de Janeiro, Brazil.

Lua’s source tree is small, easy to include in other projects. It is a
popular scripting language for games, LaTeX, Wikipedia, etc.

Characteristics

▪ Dynamic PL.

▪ Simple syntax. Little punctuation. Small, versatile feature set.

▪ Imperative.

▪ Insulated from machine.

▪ Typing: dynamic, implicit. Duck typing.

▪ Exactly eight types: number, string, boolean, table, function,
nil, userdata, thread.

▪ First-class functions.

▪ Function definitions are executable statements.

▪ Does eager evaluation (alternative: lazy evaluation).

2025-01-29 CS 331 Spring 2025 5

Review
Introduction to Lua — Build & Execution

Lua is nearly always interpreted. The interpreter in the standard
Lua distribution compiles Lua to Lua byte code, which is
system-independent. This byte code is then interpreted directly
by the runtime system.

Standard filename suffix for Lua source files: “.lua”.

Standard Lua interpreter includes an interactive environment.

2025-01-29 CS 331 Spring 2025

Lua

Byte Code

Standard Lua Interpreter
Lua

Lua Byte Code
Interpreter

Lua

Compiler

6

Lua: Fundamentals

2025-01-29 CS 331 Spring 2025 7

Lua: Fundamentals
Overview

Now we begin a systematic look at the Lua programming language.

We start with Lua’s lexical structure. Then we look at the following
topics. To avoid rehashing the tutorial, these will be presented
as summaries.

▪ Values & Expressions

▪ Output

▪ Functions

▪ Tables

▪ Arrays

▪ Flow of control

The material for this topic is also covered in a Lua source file with
lots of comments. Find this in the Git repo.

2025-01-29 CS 331 Spring 2025

See fund.lua.

8

Lua: Fundamentals
Lexical Structure — Comments

Like many other PLs, Lua has both single-line comments and
multiline comments.

Single-line comments: “--” to end-of-line:

-- This is a comment

Multiline comments: “--[” + zero or more equals-signs (=) + “[”.
End with “]” + same number of equals-signs + “]”.

--[==[This is a

comment]==] this_is_not_a_comment = 3

2025-01-29 CS 331 Spring 2025 9

Lua: Fundamentals
Lexical Structure — Keywords & Identifiers

Lua is case-sensitive: abc, Abc, and ABC are different. Case of

letters has no special meaning in Lua.

Lua has 21–22 keywords (words with special meaning):

and break do else elseif end false for function goto* if

in local nil not or repeat return then true until while

*The goto keyword was added in Lua 5.2. LuaJIT is still based on Lua 5.1.

A Lua identifier (name) is as in “C” : contains underscores (_),

letters, digits, does not begin with a digit, and is not a keyword.

A word that has the general form of an identifier, but is not allowed
as an identifier, is a reserved word. So the Lua reserved words
are the keywords. This is common, but not universal.

2025-01-29 CS 331 Spring 2025

The boldfaced terms on this
slide are not specific to Lua.

10

Lua: Fundamentals
Lexical Structure — String Literals

A literal is a representation of a fixed value in source code. The
value itself is represented, not an identifier bound to the value,
and not a computation whose result is the value.

Two kinds of string literals in Lua.

Quoted strings use single or double quotes.

aa = "hi"

ba = 'ho"\n' -- Backslash escape: \n = newline

Multiline strings use brackets & equals, like multiline comments.

cc = [===[Hello

there! Here is a quote mark inside a string: "]===]

2025-01-29 CS 331 Spring 2025

Some C++ Literals

Literal Type
42 int

42.5 double

42.5f float

true bool

'A' char

"goat" char[]

This term is not specific to Lua.

11

Lua: Fundamentals
Lexical Structure — Whitespace

Separating lexemes with whitespace is allowed, but not required …

xyz=12 -- Same as xyz = 12

… except where it clearly matters.

do return -- "do" keyword followed by "return" keyword

doreturn -- Identifier

Newlines and indentation are usually not syntactically significant.

Newlines are treated the same as other whitespace, except:

▪ A newline ends a single-line comment.

▪ A newline is illegal in a quoted string (but "\n" is fine).

▪ A newline represents itself in a multiline string—except when the
first character is a newline; such a newline is skipped.

2025-01-29 CS 331 Spring 2025 12

Lua: Fundamentals
Values & Expressions

Summary

▪ Only values have types; variables are references to values.

▪ Function type returns a string giving the type of its argument.

▪ For example, type(2+3) returns the string "number".

▪ Type errors are flagged at runtime, when the statement containing
the error is executed. An exception is raised.

▪ Arithmetic expressions & comparisons are mostly as usual.

▪ Inequality operator: “~=”.

▪ Multiple assignment: a, b, c = 3, 4+d, 5

▪ Booleans: true, false, and, or, not.

▪ Function tonumber converts its argument to a number.

▪ Function tostring converts its argument to a string.

▪ “..” operator does string concatenation, with implicit number-to-
string conversion.

2025-01-29 CS 331 Spring 2025 13

Lua: Fundamentals
Output

Summary

▪ io.write does output, with its argument converted to a string
where possible; no newline is added. io.write normally outputs to
the standard output, but it an also be used to output to a file.

▪ print also does output, with arguments separated by tabs and a
newline added at the end. print only sends to the standard output.

▪ My convention: use io.write for normal application output. Use
print for quick & dirty output—like debugging printout.

2025-01-29 CS 331 Spring 2025 14

Lua: Fundamentals
Functions

Summary

▪ Main program is code at global scope.

▪ A function definition begins with the keyword function. This is an
executable statement.

▪ Call functions as usual.

▪ If passing only a single string literal or table literal, then the parentheses

may be left off: foo("abc") → foo "abc"

▪ A parameter that is not passed gets the value nil.

▪ Return values from functions as usual.

▪ The value of a function call that does not return anything is nil.

▪ Multiple values can be returned: return x, 42, y+3

Capture these with multiple assignment: a, b, c = ff()

▪ First-class functions.

▪ Omit the function name to create an unnamed function, referred to
as a lambda function:
gg(function(n) return n*n end)

2025-01-29 CS 331 Spring 2025 15

Lua: Fundamentals
Tables

Summary

▪ Maps/dictionaries, arrays, objects, and classes are implemented
using a single Lua feature: table, a key-value structure
implemented internally as a hash table.

▪ Table literals use braces, entries separates by commas. Key-value
pair is key in brackets, equals sign, value: { …, ["abc"]=56, … }

▪ Access values using brackets, as in C++/Java: t["abc"] = 4

▪ If a key looks like an identifier, then we can use dot syntax:
t["abc"] and t.abc are the same.

▪ Delete a key from a table by setting the associated value to nil:
t["abc"] = nil

▪ We can mix types of keys, values.

▪ We can put functions in tables.
▪ We can declare a function as a table member: function t.foo(x) …

▪ Loop over all key-value pairs in a table with pairs (example soon).

▪ Tables are also used to implement operator overloading (not
covered here).

2025-01-29 CS 331 Spring 2025 16

Lua: Fundamentals
Arrays

Summary

▪ When a Lua table’s keys are consecutive positive integers starting
at one (not zero!), we call it an array. This usage is only for Lua!

▪ Array literal: list values in braces without keys. Indices start at one.
arr = { 7, "abc", fibo, 5.34 }

▪ Length of array arr: #arr

▪ Loop over array items, in order, with ipairs (example soon).

2025-01-29 CS 331 Spring 2025 17

Lua: Fundamentals
Flow of Control

Summary

▪ if COND then STMTS end

▪ false & nil are falsy (treated as false). All other values are truthy.

▪ if COND then STMTS else STMTS end

▪ if COND then STMTS elseif COND then STMTS … end

▪ “else if” is legal, but requires an extra “end”, which “elseif” avoids.

▪ while COND do STMTS end

▪ repeat STMTS until COND: like C do ... while, condition flipped.

▪ for VAR=FIRST, LAST do STMTS end

▪ for VAR=FIRST, LAST, STEP do STMTS end

▪ break: as in C. (There is no “continue”.)

▪ Iterator-based for-in loop. Examples:

▪ for k, v in pairs(TABLE) do STMTS end

▪ for k, v in ipairs(TABLE_AS_ARRAY) do STMTS end

 We will eventually write our own iterators.

▪ Other (not covered yet): coroutines, exceptions.

2025-01-29 CS 331 Spring 2025

No “end”

18

Lua: Modules

2025-01-29 CS 331 Spring 2025 19

Lua: Modules
Introduction

A module is an importable library that is encapsulated—handled
as a single entity by a programming language.

Most modern PLs support modules. A module is
usually stored in a separate file and imported
(brought into a program) with a command like
“import” or “require”.

(C does not support modules. Modules were added to C++ in the
the 2020 Standard.)

Lua’s standard library is loaded automatically; no import is needed.
But we can write our own modules, and we must import these.

Before we talk about writing modules, we cover two more pieces of
Lua: keyword local and standard-library function require.

2025-01-29 CS 331 Spring 2025

For code from

this topic, see
mod.lua &

mymodule.lua.

20

Lua: Modules
Two Pieces — local [1/6]

A local variable is accessible only inside a particular function or
other construct. Global variables do not have this restriction.

Lua variables default to global, except for function parameters and
loop counters. To create a new variable that is local to a
function, put keyword local before its first use. The variable is
then local in future uses in that function.

function ff()

 k = 3 -- Set global variable k to 3

 local n = 5 -- Create local variable n; set it to 5

 n = n+1 -- Local n; value is now 6

 …

end

-- The above local variable n cannot be accessed here

2025-01-29 CS 331 Spring 2025 21

Lua: Modules
Two Pieces — local [2/6]

Multiple variables can be declared local in a single statement.
Setting values in a local statement is optional.

local n, qq, www

n = 5 -- Set local variable n to 5

local a, b, c = 2, 4, 10

Each local creates a new variable, accessible after the local; so
avoid using local more than once with the same identifier.

x = 7 -- Sets global variable x

local x = 3 -- Creates & sets local variable x

local x -- Creates another local variable named x

-- Here, the value of x is nil

2025-01-29 CS 331 Spring 2025 22

Lua: Modules
Two Pieces — local [3/6]

Use local before a function definition to create a local function.

function gg()

 local function hh(x)

 …

 end

 hh(3)

end

-- The above local function hh cannot be called here

2025-01-29 CS 331 Spring 2025 23

Lua: Modules
Two Pieces — local [4/6]

Problem. How do we call a local function before its definition?

local function mm()

 foo()

end

local function foo()

 …

Of course, we could just define function foo first. But suppose we
have mutually recursive local functions (each of them calls the
other). Then this issue is unavoidable.

2025-01-29 CS 331 Spring 2025

This calls the global foo.

The local foo is created here.

24

Lua: Modules
Two Pieces — local [5/6]

Problem. How do we call a local function before its definition?

local foo

local function mm()

 foo()

end

local function foo()

 …

2025-01-29 CS 331 Spring 2025

A new local foo is created here. It is
different from the one called above.

This calls the local foo declared above.

25

Lua: Modules
Two Pieces — local [6/6]

Problem. How do we call a local function before its definition?

Solution. Do a local on the function name before the call, then
have no local with the function definition.

local mm, foo

function mm()

 foo()

end

function foo()

 …

2025-01-29 CS 331 Spring 2025

This redefines the local foo that was created
and called above—without creating another foo.

26

Lua: Modules
Two Pieces — require [1/2]

Our second piece is require, a function in Lua’s standard library.
It takes a single string argument. It appends “.lua” to this
string and treats the result as the filename of a Lua source file.
It calls the code in that file, just as if it were a function wrapped
in “function() … end”, like this:

function()

 …

 …

end

The return value of require is the return value of the file-as-
function—nil if nothing is returned.

2025-01-29 CS 331 Spring 2025

Contents of file that is required

27

The file will be read only once.
Subsequent calls to require with
the same filename simply return
the return value of the first call.

Lua: Modules
Two Pieces — require [2/2]

Since require always takes a single string argument, we can leave

off the parentheses in the function call.

abc = require "xyz" -- Calls file xyz.lua as a function

 -- Sets abc to its return value

In our file-as-function, we can declare variables and functions to be
local, just as in an ordinary function.

local a = 23

local b = 34

return a+b

2025-01-29 CS 331 Spring 2025

Contents of file that is required

28

Lua: Modules
Writing a Module [1/2]

Now we discuss the conventional way to use local and require to

create and make use of a Lua module.

Store a module in a file named after the module. For example,
module quark would be in quark.lua.

Begin the module file by creating an empty local table. It is not a
bad idea to name this table after the module, too.

-- File quark.lua

-- Source for module quark

local quark = {} -- Table that will contain module

 -- members

2025-01-29 CS 331 Spring 2025 29

Lua: Modules
Writing a Module [2/2]

Things to export are module members. Everything else is local.

We can make a function a module member in its definition.

local function ff(n) -- ff is not exported

 …

end

function quark.gg(a, b, c) -- gg is exported

 ff(a+b+c)

end

End the module file by returning the table.

return quark

2025-01-29 CS 331 Spring 2025

Not a Lua-specific term. To export something
is to make it available elsewhere.

30

Lua: Modules
Using a Module [1/2]

To import a module, use require. Save the return value. It is not

a bad idea to save the module table in a variable named after
the module.

quark = require "quark"

Access module members using the dot syntax for table members.

quark.gg(2, 4, 10)

When requiring a module inside another module, make the variable
holding the module table local. (“Everything else is local.”)

local quark = require "quark"

2025-01-29 CS 331 Spring 2025 31

Lua: Modules
Using a Module [2/2]

If you want to use a module member without having to add
MODULENAME. before it, then you can set a variable equal to
the module member.

quark.gg(1, 2, 3) -- This works, but what if I think

quark.gg(4, 5, 6) -- it is too verbose?

gg = quark.gg -- Use a variable with a nicer name

gg(1, 2, 3)

gg(4, 5, 6)

The above is much like doing “using quark::gg;” in C++.

2025-01-29 CS 331 Spring 2025

This works because functions are first-class.

32

Lua: Modules
CODE

TO DO

▪ Write a Lua module and a program that uses it.

2025-01-29 CS 331 Spring 2025

Done. See mymodule.lua

& mod.lua.

33

	Slide 1: Lua: Fundamentals Lua: Modules
	Slide 2: Unit Overview The Lua Programming Language
	Slide 3
	Slide 4: Review PL Category: Dynamic PLs
	Slide 5: Review Introduction to Lua — History, Characteristics
	Slide 6: Review Introduction to Lua — Build & Execution
	Slide 7
	Slide 8: Lua: Fundamentals Overview
	Slide 9: Lua: Fundamentals Lexical Structure — Comments
	Slide 10: Lua: Fundamentals Lexical Structure — Keywords & Identifiers
	Slide 11: Lua: Fundamentals Lexical Structure — String Literals
	Slide 12: Lua: Fundamentals Lexical Structure — Whitespace
	Slide 13: Lua: Fundamentals Values & Expressions
	Slide 14: Lua: Fundamentals Output
	Slide 15: Lua: Fundamentals Functions
	Slide 16: Lua: Fundamentals Tables
	Slide 17: Lua: Fundamentals Arrays
	Slide 18: Lua: Fundamentals Flow of Control
	Slide 19
	Slide 20: Lua: Modules Introduction
	Slide 21: Lua: Modules Two Pieces — local [1/6]
	Slide 22: Lua: Modules Two Pieces — local [2/6]
	Slide 23: Lua: Modules Two Pieces — local [3/6]
	Slide 24: Lua: Modules Two Pieces — local [4/6]
	Slide 25: Lua: Modules Two Pieces — local [5/6]
	Slide 26: Lua: Modules Two Pieces — local [6/6]
	Slide 27: Lua: Modules Two Pieces — require [1/2]
	Slide 28: Lua: Modules Two Pieces — require [2/2]
	Slide 29: Lua: Modules Writing a Module [1/2]
	Slide 30: Lua: Modules Writing a Module [2/2]
	Slide 31: Lua: Modules Using a Module [1/2]
	Slide 32: Lua: Modules Using a Module [2/2]
	Slide 33: Lua: Modules CODE

