
PL Category: Dynamic PLs
Introduction to Lua

CS 331 Programming Languages

Lecture Slides

Monday, January 27, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

2025-01-27 CS 331 Spring 2025

Unit Overview
Formal Languages & Grammars

Topics

▪ Basic concepts

▪ Introduction to formal languages & grammars

▪ The Chomsky hierarchy

▪ Regular languages

▪ Regular languages & regular expressions

▪ Context-free languages

▪ Programming language syntax specification















2

Review

2025-01-27 CS 331 Spring 2025 3

Review
PL Syntax Specification — Backus-Naur Form

Backus-Naur Form (BNF) is a notation for writing CFGs.

BNF production for a digit, wrapped (incorrectly!) for lack of space:

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5"

 | "6" | "7" | "8" | "9"

Unlike our earlier CFG format, BNF is suitable for specifying
programming language syntax.

▪ It allows for terminals to contain arbitrary characters.

▪ It does not require unusual characters (like our “→” and “ε”).

▪ It is suitable for use as input to a computer program.

▪ It allows symbols to have descriptive names (e.g., <for-loop>),
rather than just single letters.

2025-01-27 CS 331 Spring 2025 4

Review
PL Syntax Specification — Extended Backus-Naur Form

Some variations on BNF are referred to as Extended BNF (EBNF).

phone_number = [area_code] digit7 ;

area_code = "(" digit digit digit ")" ;

digit7 = digit digit digit "-"

 digit digit digit digit ;

digit = "0" | "1" | "2" | "3" | "4" | "5"

 | "6" | "7" | "8" | "9" ;

EBNF typically includes two important features.

▪ Brackets […] surround optional sections.

▪ Braces { … } surround optional, repeatable sections.

2025-01-27 CS 331 Spring 2025

BNF is a single
standard. EBNF

refers to a
family of similar

standards.

Worth
memorizing!

5

2025-01-27 CS 331 Spring 2025

Unit Overview
The Lua Programming Language

Topics

▪ Introduction to survey of programming languages

▪ PL feature: compilation & interpretation

▪ PL category: dynamic PLs

▪ Introduction to Lua

▪ Lua: fundamentals

▪ Lua: modules

▪ Lua: objects

▪ Lua: advanced flow





6

PL Category: Dynamic PLs

2025-01-27 CS 331 Spring 2025 7

PL Category: Dynamic PLs
Background [1/7]

Entering commands one by one can be tedious. Decades ago, the
idea of a file containing a “batch” (that is, a list) of commands
was introduced. Such a file is a batch file.

Interactive Session

$ curl -O http://b.us/dog.c

$ curl -O http://b.us/cat.c

$ curl -O http://b.us/asp.c

$ curl -O http://b.us/bat.c

$ curl -O http://b.us/eel.c

2025-01-27 CS 331 Spring 2025

Batch File

curl -O http://b.us/dog.c

curl -O http://b.us/cat.c

curl -O http://b.us/asp.c

curl -O http://b.us/bat.c

curl -O http://b.us/eel.c

Command
prompt

Typed in
separately.

In a file.
Just run the file.

8

PL Category: Dynamic PLs
Background [2/7]

Variables and control structures were added to the syntax for batch
files. A program written in the resulting programming language
is a script.

Batch File

curl -O http://b.us/dog.c

curl -O http://b.us/cat.c

curl -O http://b.us/asp.c

curl -O http://b.us/bat.c

curl -O http://b.us/eel.c

A program that handles command entry is called a shell; a
program interpreted by the shell is a shell script.

2025-01-27 CS 331 Spring 2025

Shell Script

for n in dog cat asp bat eel

do

 curl -O http://b.us/$n.c

done This particular script
uses the syntax of
the Bash shell.

9

PL Category: Dynamic PLs
Background [3/7]

This idea turned out to be useful in many kinds of software
packages, as a way to extend functionality, automate
operations, and allow for customization.

When a software package becomes complex enough, its designers
often allow for some of the tasks it performs to be automated
through the use of scripts. The programming language in which
these scripts are written is the package’s scripting language.

Full-featured word processors, spreadsheets, and similarly complex
software packages often allow for scripts. So do web pages,
many games, and the windowing environments that form the
front ends for major desktop operating systems.

2025-01-27 CS 331 Spring 2025 10

PL Category: Dynamic PLs
Background [4/7]

To improve on scripting languages, small, high-level text-
processing PLs appeared. One of these, written at Bell Labs in
the 1970s, was AWK—after its authors, A. Aho, P. Weinberger,
and B. Kernighan.

Below is an AWK script that treats the last word in each line of a
file as a number and prints the sum of these numbers.

BEGIN { total = 0 }

{

 total += $NF

}

END { print "Total:", total }

2025-01-27 CS 331 Spring 2025 11

PL Category: Dynamic PLs
Background [5/7]

1987 saw the release of Perl, a PL designed by Larry Wall and
based on AWK, various shells, and other text-processing tools.
While aimed at the same kinds of problems as these tools, Perl
was a full-featured programming language, with sophisticated
data structures and access to operating-system services.

Below is a Perl script that treats the last word in each line of a file
as a number and prints the sum of these numbers.

$total = 0;

while (<>) {

 @_ = split;

 $total += $_[-1];

}

print "Total: $total\n";

2025-01-27 CS 331 Spring 2025 12

PL Category: Dynamic PLs
Background [6/7]

Perl was soon used for many other tasks. For example, in the early
days of the Web, Perl dominated server-side web programming.

It was an idea whose time had code. A number of similar PLs were
released in the next few years: Python in 1991, Lua in 1993,
and Ruby, JavaScript, and PHP in 1995.

These PLs continue to be used today. We call them dynamic
programming languages. They are heavily used in web
programming, and increasingly in scientific computing.

2025-01-27 CS 331 Spring 2025 13

PL Category: Dynamic PLs
Background [7/7]

To clarify:

▪ I refer to the programming-language category as dynamic
programming languages.

▪ I use “scripting language” to describe a role a programming
language can play in a software package.

For example, Lua is a dynamic programming language. It can be
used as a scripting language for Wikipedia pages.

2025-01-27 CS 331 Spring 2025 14

PL Category: Dynamic PLs
Typical Characteristics [1/2]

A typical dynamic programming language has the following
features/characteristics.

▪ Dynamic typing (types are determined and checked at runtime).

▪ Just about everything is modifiable at runtime.

▪ For example, we might be able to create new class members at runtime.

▪ Little text overhead in code.

▪ A program starts by executing the code at global scope, not “main”.

▪ High-level.

▪ Programmers do not deal with resource management, access memory
directly, or implement the details of data structures.

▪ A batteries-included approach.

▪ For example, web access might be included in the standard library.

▪ Code is basically imperative (we tell the computer what to do, as
in C++ and Java) and block-structured, with support for object-
oriented programming.

▪ Implementations are mostly interpreters, with compilation to a byte
code as an initial step. Native-code executable files are uncommon.

2025-01-27 CS 331 Spring 2025 15

PL Category: Dynamic PLs
Typical Characteristics [2/2]

Below is the hello-world program in C++ again, along with
equivalent complete programs in five dynamic PLs.

2025-01-27 CS 331 Spring 2025

C++
#include <iostream>

using std::cout;

int main()

{

 cout << "Hello, world!\n"

}

Perl
print "Hello, world!\n";

Python
print("Hello, world!")

Lua
io.write("Hello, world!\n")

Ruby
puts "Hello, world!"

PHP
echo "Hello, world!\n";

16

Introduction to Lua

2025-01-27 CS 331 Spring 2025 17

Introduction to Lua
History [1/2]

The Lua programming language originated in 1993 at the Pontifical
Catholic University in Rio de Janeiro, Brazil. It was created in
response to the strong trade barriers that Brazil had at the time,
which made using software from other countries difficult. Its
creation was led by Luiz Henrique de Figueiredo and Waldemar
Celes, of the Computer Graphics Technology Group.

Lua was partly based on the existing programming language SOL
(Simple Object Language). In Portuguese, sol means sun; lua
means moon.

Lua continues to be actively developed. It is now freely available
via the web, in robust implementations that are highly
consistent across platforms.

2025-01-27 CS 331 Spring 2025 18

Introduction to Lua
History [2/2]

The standard Lua implementation is very lightweight: its source
tree—the directory structure holding the source code for the
various components of Lua—is unusually small, and executing
Lua code is generally a low-cost operation.

Lua is mostly used as a scripting language, with the entire Lua
source tree included in the source of some other software. Lua is
a common scripting language for games—its first major use
being in World of Warcraft. Lua scripts can also be executed
within Wikipedia pages and the LaTeX typesetting system.

I estimate that, today, Lua is the fifth most popular dynamic PL,
after Python, JavaScript, PHP, and Ruby. Lua gets less publicity
than other PLs, because it is generally included as part of some
other software package. Lua is often used, but few large
projects are written entirely in Lua.

2025-01-27 CS 331 Spring 2025 19

Introduction to Lua
Characteristics — Basics

Lua is a dynamic PL with a simple syntax. A small but versatile
feature set supports most common programming paradigms:
object-oriented programming, functional programming, etc.

Lua code is generally organized similarly to C++ & Java. Code is
largely imperative: we write statements that tell the
computer what to do. Code is encapsulated in functions and the
equivalent of classes (but different terminology is used).

Lua programs are insulated from the machine on which they
execute. They have no direct access to raw memory. The
runtime system does all memory allocation and deallocation.

Lua was designed to interact with code written in other PLs.
Various foreign function interfaces (FFIs) are available.

2025-01-27 CS 331 Spring 2025 20

Introduction to Lua
Characteristics — Code Structure

Lua uses less punctuation than C++ & Java. It has no semicolons
and fewer parentheses. Where C++ uses braces to delimit a
block, Lua usually marks the end of a block with the keyword
end. As for semicolons, Lua has a carefully designed grammar
that makes end-of-statement markers unnecessary.

Some example Lua code that defines a function:

function fibo(n)

 local currfib, nextfib = 0, 1

 for i = 1, n do

 currfib, nextfib = nextfib, currfib + nextfib

 end

 return currfib

end

2025-01-27 CS 331 Spring 2025 21

Introduction to Lua
Characteristics — Type System [1/3]

Lua has dynamic typing: types are determined and checked at
runtime.

Lua’s typing is largely implicit: types do not need to be explicitly
stated. Only values have types. Lua variables are merely
references to values, and do not themselves have types.

n = 4 -- Set variable n to value of type number

n = "abc" -- Same variable set to value of type string

Function calls are checked via duck typing: an argument may be
passed to a function as long as the operations the function
performs are defined on that argument. (“If it looks like a duck,
swims like a duck, and quacks like a duck, then it’s a duck.”)

2025-01-27 CS 331 Spring 2025

These two lines can be executed
one right after the other.

22

Introduction to Lua
Characteristics — Type System [2/3]

Lua’s type system includes exactly eight types:

▪ number—a floating-point number. Since version 5.3, Lua guarantees
that some operations will produce exact whole-number answers.

▪ string

▪ boolean

▪ table—a hash table. Tables are the only nontrivial data structure. A
table is versatile, functioning as map/dictionary, array, object, and
the equivalent of a C++/Java class. Tables are also used to support
operator overloading.

▪ function

▪ nil—a “nothing” type. The type of a nonexistent value.

▪ userdata—an opaque blob that Lua cannot look inside, used when
Lua is an intermediary, passing data between code in other PLs.

▪ thread—a thread of execution.

Lua does not allow new types to be defined.

2025-01-27 CS 331 Spring 2025 23

Introduction to Lua
Characteristics — Type System [3/3]

Lua has first-class functions.

A type is first-class if its values can be created, stored, operated
on, and passed & returned with the same ease and facility as
types like int in C++. Examples of types that are not first-class
are functions and built-in arrays in C & C++.

So in Lua, a function is an ordinary value.

Definitions of functions and the equivalent of classes are
executable statements in Lua. New functions can be defined at
runtime. Indeed, functions can only be defined at runtime.

Like C++, Java, and Python, Lua does eager evaluation: an
expression is evaluated when it is encountered during execution.
(An alternative is lazy evaluation: an expression is evaluated
only when its value is needed. More on this later in the course.)

2025-01-27 CS 331 Spring 2025 24

Introduction to Lua
Build & Execution — Basics [1/3]

Lua is nearly always interpreted. The interpreter in the standard
Lua distribution compiles Lua to Lua byte code, which is
system-independent. This byte code is then interpreted directly
by the runtime system.

There are other Lua implementations, including LuaJIT, a Lua
interpreter that uses a JIT compiler.

2025-01-27 CS 331 Spring 2025

Lua

Byte Code

Standard Lua Interpreter
Lua

Lua Byte Code
Interpreter

Lua

Compiler

25

Introduction to Lua
Build & Execution — Basics [2/3]

The standard Lua interpreter has an interactive environment,
allowing statements to be typed in for immediate execution.

> a = 3

> =a

3

> a = a+100

> =a

103

> for i = 1,10 do io.write(" ", i)

>> end io.write("\n")

 1 2 3 4 5 6 7 8 9 10

We can define functions and call them. Support for multi-line
constructions may vary, depending on the environment in use.

2025-01-27 CS 331 Spring 2025

This is an
interactive session.
Text like this is

printed by the system.

26

Introduction to Lua
Build & Execution — Basics [3/3]

Lua programs can also be stored in files to be executed; the
standard filename suffix is “.lua”.

In an interactive environment, we can execute a Lua source file by
passing the filename, enclosed in quotes, to function dofile.

> dofile("zzz.lua")

Lua is supported by many IDEs (Integrated Development
Environments). ZeroBrane Studio is a Lua-specific IDE.

2025-01-27 CS 331 Spring 2025 27

Introduction to Lua
Build & Execution — The Shebang Convention [1/3]

On Unix-derived operating systems (MacOS, Linux distributions; I
will say “*ix”), there is a standard way to specify an interpreter
for a program.

First, some background. At a *ix command line, I can execute a
Lua program (say, “zzz.lua”) by typing

lua zzz.lua

Above, “lua” is the name of the Lua interpreter, a program stored
(on my machine) at /usr/local/bin/lua.

2025-01-27 CS 331 Spring 2025 28

Introduction to Lua
Build & Execution — The Shebang Convention [2/3]

When executing a file under *ix, we can specify an interpreter by
starting the file with “#!”, followed by

the path of the interpreter. This is the
sharp-bang or shebang line.

#!/usr/local/bin/lua

I begin zzz.lua as above, and I set execute permission for the file.

When I execute this file, operating system sees the shebang, reads
the path of the interpreter, and executes the interpreter with the
filename of the program as an argument, just as if I had typed:

/usr/local/bin/lua zzz.lua

When the Lua interpreter executes the Lua code in the file, it
knows to ignore a first line that begins with “#!”.

2025-01-27 CS 331 Spring 2025

The shebang line is not
specific to Lua. (Indeed,
it does not really have
much to do with Lua.)

29

Introduction to Lua
Build & Execution — The Shebang Convention [3/3]

The shebang line is useful, but it depends on the interpreter being
in a specific directory.

To solve this problem, there is often a program called “env”. Its job
is to know where the interpreters are. File env is always in the
directory /usr/bin. Now I can use the following first line.

#!/usr/bin/env lua

When I execute the file, it is as if I typed:

/usr/bin/env lua zzz.lua

Then the env program does:

/usr/local/bin/lua zzz.lua

2025-01-27 CS 331 Spring 2025 30

Introduction to Lua
Some Programming [1/2]

TO DO

▪ Try out the Lua interactive environment.

▪ Write a hello-world program in Lua and execute it in various ways,
including dofile, using a shebang line, and using an IDE.

2025-01-27 CS 331 Spring 2025

Done. See hello.lua.

31

Introduction to Lua
Some Programming [2/2]

The Fibonacci numbers are the following sequence:

 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, …

Each entry is the sum of the previous two.

We can define the Fibonacci numbers formally using a recurrence:

F0 = 0; F1 = 1; for n ≥ 2, Fn = Fn–2 + Fn–1.

I have written a Lua program that computes and prints Fibonacci
numbers: fibo.lua.

TO DO

▪ Run fibo.lua.

2025-01-27 CS 331 Spring 2025

233 + 377 = 610

See fibo.lua.

32

	Slide 1: PL Category: Dynamic PLs Introduction to Lua
	Slide 2: Unit Overview Formal Languages & Grammars
	Slide 3
	Slide 4: Review PL Syntax Specification — Backus-Naur Form
	Slide 5: Review PL Syntax Specification — Extended Backus-Naur Form
	Slide 6: Unit Overview The Lua Programming Language
	Slide 7
	Slide 8: PL Category: Dynamic PLs Background [1/7]
	Slide 9: PL Category: Dynamic PLs Background [2/7]
	Slide 10: PL Category: Dynamic PLs Background [3/7]
	Slide 11: PL Category: Dynamic PLs Background [4/7]
	Slide 12: PL Category: Dynamic PLs Background [5/7]
	Slide 13: PL Category: Dynamic PLs Background [6/7]
	Slide 14: PL Category: Dynamic PLs Background [7/7]
	Slide 15: PL Category: Dynamic PLs Typical Characteristics [1/2]
	Slide 16: PL Category: Dynamic PLs Typical Characteristics [2/2]
	Slide 17
	Slide 18: Introduction to Lua History [1/2]
	Slide 19: Introduction to Lua History [2/2]
	Slide 20: Introduction to Lua Characteristics — Basics
	Slide 21: Introduction to Lua Characteristics — Code Structure
	Slide 22: Introduction to Lua Characteristics — Type System [1/3]
	Slide 23: Introduction to Lua Characteristics — Type System [2/3]
	Slide 24: Introduction to Lua Characteristics — Type System [3/3]
	Slide 25: Introduction to Lua Build & Execution — Basics [1/3]
	Slide 26: Introduction to Lua Build & Execution — Basics [2/3]
	Slide 27: Introduction to Lua Build & Execution — Basics [3/3]
	Slide 28: Introduction to Lua Build & Execution — The Shebang Convention [1/3]
	Slide 29: Introduction to Lua Build & Execution — The Shebang Convention [2/3]
	Slide 30: Introduction to Lua Build & Execution — The Shebang Convention [3/3]
	Slide 31: Introduction to Lua Some Programming [1/2]
	Slide 32: Introduction to Lua Some Programming [2/2]

