
Programming Language Syntax Specification
Introduction to Survey of Programming Languages
PL Feature: Compilation & Interpretation

CS 331 Programming Languages

Lecture Slides

Friday, January 24, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

2025-01-24 CS 331 Spring 2025

Unit Overview
Formal Languages & Grammars

Topics

▪ Basic concepts

▪ Introduction to formal languages & grammars

▪ The Chomsky hierarchy

▪ Regular languages

▪ Regular languages & regular expressions

▪ Context-free languages

▪ Programming language syntax specification

2

Review

2025-01-24 CS 331 Spring 2025 3

Review
Context-Free Languages — CFGs & CFLs

A context-free grammar (CFG) is a grammar, each of whose
productions has a left-hand side consisting of a single
nonterminal.

A context-free language (CFL) is a language that is generated
by some context-free grammar.

CFGs are powerful enough to specify the syntax of most
programming languages. They are thus important in parsing:
determining whether given input (for example, a program) is
syntactically correct, and, if so, finding its structure.

We may use a vertical bar to separate the right-hand sides of
productions having the same left-hand side.

S → aSa | b

2025-01-24 CS 331 Spring 2025

Same as:

S → aSa
S → b

4

Review
Context-Free Languages — Parse Trees

Grammar B

S → S+S | n

We can represent the structure of a string
using a parse tree: a rooted tree with
one symbol in each node, based on a
derivation.

▪ The root holds the start symbol.

▪ The symbols a nonterminal is expanded into become its children—
left to right, one symbol per tree node.

Here is a parse tree for n+n+n, based on
the above CFG and derivation.

We can read off the final string by looking
at leaves that contain terminal symbols.

2025-01-24 CS 331 Spring 2025

Derivation of n+n+n

 S

 S+S

 S+S+S

 n+S+S

 n+n+S

 n+n+n

Parse Tree

“+” is a terminal here.

+ SS

+S S n

nn

S

5

Review
Context-Free Languages — Ambiguity

Grammar B

S → S+S | n

A CFG is ambiguous if some string has multiple parse trees.

Below is a non-ambiguous CFG that generates the same language
and also expresses the left-associativity of “+”.

Grammar B’

S → S+n | n

2025-01-24 CS 331 Spring 2025

SParse Tree

 #1

SParse Tree

 #2
+ SS

+S S n

nn

+ SS

+S Sn

nn

This parse tree
is unique!

S

+ nS

+S n

n

Derivation

 S

 S+n

 S+n+n

 n+n+n

Parse Tree

6

Review
Context-Free Languages — Leftmost & Rightmost Derivations

The CFG below generates { xyz }. There are multiple derivations.

Grammar D

S → ABC

A → x

B → y

C → z

When the leftmost nonterminal is expanded each time, we have a
leftmost derivation. Similarly, rightmost derivation.

With the above grammar, there is only one
parse tree. Grammar D is not ambiguous.

2025-01-24 CS 331 Spring 2025

Leftmost
Derivation

 S

 ABC

 xBC

 xyC

 xyz

Rightmost
Derivation

 S

 ABC

 ABz

 Ayz

 xyz

Neither

 S

 ABC

 AyC

 Ayz

 xyz

S

B CA

x y z

7

Programming Language Syntax
Specification

2025-01-24 CS 331 Spring 2025 8

Programming Language Syntax Specification
Introduction

Now we look at how the syntax of programming languages is
specified.

Since the 1970s, the syntax specification of a programming
language has generally involved a grammar. This trend was
heavily influenced by the release of the Pascal programming
language by Swiss professor Niklaus Wirth in 1970.

Recall the names we use for various delimiter characters:

2025-01-24 CS 331 Spring 2025

Parentheses ()

 Brackets []

 Braces { }

 Angle brackets < >

9

Programming Language Syntax Specification
Backus-Naur Form [1/4]

Our grammar format (nonterminals are upper-case letters, etc.) is
inadequate for specifying the syntax of programming languages.

We want a grammar format that:

▪ Can deal with terminals involving arbitrary character sets.

▪ Does not require unusual characters (like our “→” and “ε”).

▪ Is suitable for use as input to a computer program.

▪ Allows symbols to have descriptive names (e.g., “for loop”), rather
than just single letters.

A solution: Backus-Naur Form (BNF).

▪ A notation for writing context-free grammars.

▪ Original idea by John Backus (1959). Revised by Peter Naur (1960).

▪ BNF has been used to specify the syntax of many programming
languages.

2025-01-24 CS 331 Spring 2025 10

Programming Language Syntax Specification
Backus-Naur Form [2/4]

In BNF:

▪ Nonterminals are enclosed in angle brackets: (<for-loop>). Inside
the angle brackets, the name of the nonterminal must begin with a
letter and contain only letters, digits, and hyphens (-).

▪ The start symbol can vary.

▪ Terminals are enclosed in quotes: double ("cat") or single ('"a"').

▪ Our arrow is replaced by colon-colon-equals: (::=).

▪ The vertical bar (|) is used the same way we have used it.

▪ Epsilon (ε) is not used.

▪ Blanks between nonterminals, terminals, etc., are ignored.

▪ Each production must lie entirely on a single line.

BNF production for a digit, wrapped (incorrectly!) for lack of space:

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5"

 | "6" | "7" | "8" | "9"

2025-01-24 CS 331 Spring 2025

One nonterminal symbol

One terminal symbol

11

Programming Language Syntax Specification
Backus-Naur Form [3/4]

A complete BNF grammar for a U.S. phone number. Productions
are (incorrectly!) shown on multiple lines due to lack of space.

<phone-number> ::= <area-code> <digit7> | <digit7>

<area-code> ::= "(" <digit> <digit> <digit> ")"

<digit7> ::= <digit> <digit> <digit> "-"

 <digit> <digit> <digit> <digit>

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5"

 | "6" | "7" | "8" | "9"

The language generated by the above CFG, with start symbol
<phone-number>, includes the following strings, among others:

▪ (907)474-5736

▪ 555-1234

2025-01-24 CS 331 Spring 2025 12

Programming Language Syntax Specification
Backus-Naur Form [4/4]

BNF is merely an alternative notation for grammars. All the
concepts we have covered are still applicable:

 A → xB

Also: derivation, language generated, whether a grammar is
regular, parse tree, ambiguity.

2025-01-24 CS 331 Spring 2025

<declaration> ::= <type-id> <var-id> ";"

Production

Nonterminal
symbol

Terminal symbol

BNFOld

13

Programming Language Syntax Specification
Extended Backus-Naur Form [1/2]

A number of variations on BNF have been proposed. Some of these
are referred to as Extended BNF (EBNF).

EBNF typically includes the following differences from BNF.

▪ Nonterminals are not enclosed in angle brackets.

▪ The “::=” is replaced by something shorter, perhaps “=” or “:”.

▪ A production is allowed to use multiple lines. There is typically an
end mark for a production—often a semicolon (;).

▪ Parentheses may be used for grouping.

▪ Brackets […] surround optional sections.

▪ Braces { … } surround optional, repeatable sections.

Note the last two points above. These are used in many kinds of
syntax notation (but not BNF!). They correspond, respectively,
to “?” and “*” as commonly used in regular expressions.

2025-01-24 CS 331 Spring 2025

Remember
these!

14

Programming Language Syntax Specification
Extended Backus-Naur Form [2/2]

Here is the phone-number grammar using a form of EBNF.

phone_number = [area_code] digit7 ;

area_code = "(" digit digit digit ")" ;

digit7 = digit digit digit "-"

 digit digit digit digit ;

digit = "0" | "1" | "2" | "3" | "4" | "5"

 | "6" | "7" | "8" | "9" ;

Unlike our earlier BNF grammar, which we had to fudge to get it to
fit on the slide, the above is entirely correct.

2025-01-24 CS 331 Spring 2025 15

Programming Language Syntax Specification
Grammars in Practice [1/5]

Today, most programming languages have their syntax specified
using a grammar written in something like BNF/EBNF.

Here is one production from a grammar for the C programming
language, using the input syntax for the parser generator Yacc.

compound_statement

 : '{' '}'

 | '{' statement_list '}'

 | '{' declaration_list '}'

 | '{' declaration_list statement_list '}'

 ;

Above, terminals are single-quoted. Nonterminals are ordinary
words, possibly containing underscores (_). The arrow becomes
a colon (:). A semicolon (;) marks the end of a production.

2025-01-24 CS 331 Spring 2025 16

Programming Language Syntax Specification
Grammars in Practice [2/5]

The lexical structure of a programming language is about how a
program is broken into lexemes: identifiers, operators,
keywords, etc.

Often (but not always!), lexical structure is specified separately
from overall syntax—using a separate grammar, or using some
other specification method.

When this is done, a grammar for the overall syntax will have two
kinds of terminals:

▪ Quoted strings indicating exactly what characters must appear.

▪ Categories of lexemes from the lexical-structure specification.

There must be some way of distinguishing the second kind of
terminal from a nonterminal. One common method is to place
lexeme-category terminals in ALL UPPER CASE.

2025-01-24 CS 331 Spring 2025 17

Programming Language Syntax Specification
Grammars in Practice [3/5]

Here is part of a grammar for an assignment statement in some C-
like programming language.

assign_stmt = IDENTIFIER assign_op expression ";" ;

assign_op = "=" | "+=" | "-=" | "*=" | "/=" | "%=" ;

expression = …

Above, assign_stmt, assign_op, and expression are

nonterminals.

";", "=", "+=", etc., are examples of the first kind of terminal:
quoted strings indicating exactly what characters must appear.

IDENTIFIER is an example of the second kind of terminal:
categories of lexemes from the lexical-structure specification.

2025-01-24 CS 331 Spring 2025 18

Programming Language Syntax Specification
Grammars in Practice [4/5]

BNF, EBNF, and the other grammar conventions we are looking at
all have, as one of their goals, being readable by programs.

Grammars that are intended only for humans to read can make
use of typographical differences and cut down on punctuation.

For example, here is a production from the 2014 C++ Standard.

selection-statement:

 if (condition) statement

 if (condition) statement else statement

 switch (condition) statement

Nonterminals are in a slanted font, while terminals are in a
typewriter font. Vertical bars are omitted, with the right-hand
sides placed on separate lines. A production has no end mark.

2025-01-24 CS 331 Spring 2025 19

Programming Language Syntax Specification
Grammars in Practice [5/5]

Conclusion. We need standards for representing grammars. These
must be used consistently. But exactly what they are is less
important.

TO DO

▪ Look at the official syntax specifications of various programming
languages.

2025-01-24 CS 331 Spring 2025

Done. We looked at syntax

specifications for C++,
Haskell, Python, and Lua.

20

Programming Language Syntax Specification
Grammar + Additional Rules — The Dangling “else” Problem [1/2]

It is common that the grammar for a programming language is not
quite a complete specification of its syntax.

For example, consider the partial C++ grammar two slides back.

if (n >= 10) if (n >= 20) ff(); else gg();

Which of the following is intended by the above?

if (n >= 10)

 if (n >= 20)

 ff();

 else

 gg();

2025-01-24 CS 331 Spring 2025

if (n >= 10)

 if (n >= 20)

 ff();

else

 gg();

Of course, we do
not want to write

code like this.
Braces are good!

21

Programming Language Syntax Specification
Grammar + Additional Rules — The Dangling “else” Problem [2/2]

Which of the following is intended?

if (n >= 10)

 if (n >= 20)

 ff();

 else

 gg();

We cannot tell. The above correspond to different parse trees; the
grammar for C++ is ambiguous! So we add a rule: an “else” is
attached to the most recent “if”. The first structure is parsed.

This is the dangling “else” problem. It exists in the C family (C,
C++, Java, etc.) and in other PLs as well. But it can be avoided.
Python, Lua, Haskell, and Scheme do not have the problem.

2025-01-24 CS 331 Spring 2025

if (n >= 10)

 if (n >= 20)

 ff();

else

 gg();

22

Programming Language Syntax Specification
Grammar + Additional Rules — Operator Precedence

Another situation in which rules in addition to the grammar are
often used involves operator precedence and associativity.

Operator precedence and associativity can be specified entirely in
the grammar. However, it is often simpler to do so using
separate rules.

This is done in the C family (C, C++, Java, etc.). Also see the
grammar for Lua.

2025-01-24 CS 331 Spring 2025 23

2025-01-24 CS 331 Spring 2025

Unit Overview
The Lua Programming Language

Our second unit: The Lua Programming Language.

Topics

▪ Introduction to survey of programming languages

▪ PL feature: compilation & interpretation

▪ PL category: dynamic PLs

▪ Introduction to Lua

▪ Lua: fundamentals

▪ Lua: modules

▪ Lua: objects

▪ Lua: advanced flow

After this we will cover Lexing & Parsing.

24

Introduction to Survey of
Programming Languages

2025-01-24 CS 331 Spring 2025 25

2025-01-24 CS 331 Spring 2025

Introduction to Survey of Programming Languages
From the First Day of Class — Course Overview: Topics

The course material will be divided into eight units:

1. Formal Languages & Grammars

2. The Lua Programming Language

▪ PL Feature: Compilation & Interpretation

3. Lexing & Parsing

4. The Haskell Programming Language

▪ PL Feature: Type System

5. The Scheme Programming Language

▪ PL Feature: Identifiers & Values

▪ PL Feature: Reflection

6. Semantics & Interpretation

7. The Prolog Programming Language

▪ PL Feature: Execution Model

8. Student Presentations on Programming Languages

Track 1: Syntax &
Semantics of PLs.

Track 2: PL features &
categories, specific PLs.

26

Introduction to Survey of Programming Languages
Overview

So far, all material we have covered in class has belonged to the
first track, on syntax and semantics.

Now we switch to the second track, beginning a survey of
programming languages.

We will look at:

▪ Features that programming languages can have, and how these
features appear in actual programming languages.

▪ Categories* of programming languages.

▪ Four specific programming languages, each from a different
category: Lua, Haskell, Scheme, and Prolog.

*We will not be doing a complete taxonomy of programming languages.
Our categories will be fuzzy, may overlap, and will not include all PLs.

2025-01-24 CS 331 Spring 2025 27

Introduction to Survey of Programming Languages
Some Terminology

A programming language (PL) is a notation for specifying
computations. A complete specification is called a program.

We will occasionally need a term for an arbitrary thing in the
source for a program: a variable, expression, function, class,
etc. The word we will use is entity.

An expression is an entity that has a value. Below are some C++
expressions.

 -34.5 x (3+g/6)*k ff(z) "Ostrich"

Lastly, beware the word type. This is a technical term with a
specific meaning. Where we might informally say “this type of
thing”, let us use the word kind or category: “this kind of
thing”, “this category of thing”.

2025-01-24 CS 331 Spring 2025 28

Introduction to Survey of Programming Languages
Hello-World Programs

Here are hello-world programs in various programming languages.

2025-01-24 CS 331 Spring 2025

C++
#include <iostream>

using std::cout;

int main()

{

 cout << "Hello, world!\n";

}

Lua
io.write("Hello, world!\n")

Haskell
module Main where

main = putStrLn "Hello, world!"

Prolog
main :- write('Hello, world!'), nl.

Scheme
(display "Hello, world!")

(newline)

29

PL Feature: Compilation &
Interpretation

2025-01-24 CS 331 Spring 2025 30

PL Feature: Compilation & Interpretation
Runtime

When a program is executed, the
computations that it specifies actually
occur. The time during which a
program is being executed is runtime.

An implementation of a PL will include a runtime system (often
simply runtime): code that assists in, or sometimes performs,
execution of a program. This might include low-level I/O,
memory mangagement, etc.

Some execution methods never create an executable file or any
machine language at all. In such cases, the runtime system will
be a separate program that handles all code execution.

2025-01-24 CS 331 Spring 2025

These slides are an incomplete
summary of the reading

“Compilers and Interpreters”.

31

PL Feature: Compilation & Interpretation
Compilation [1/2]

A compiler takes code in one PL (the source language) and
transforms it into code in another PL (the target language);
the compiler is said to target this second PL.

Compilers often target native code or a byte code. However, a
compiler can target any PL; for example, there are many
compilers that target JavaScript.

In practice, we usually only use the term “compiler” when:

▪ the source and target languages differ significantly, and

▪ The target language is lower-level than the source.

2025-01-24 CS 331 Spring 2025

Source

Language

Target

Language
Compiler

32

PL Feature: Compilation & Interpretation
Compilation [2/2]

Good compilers proceed in a number of distinct steps. Code is
transformed into an intermediate representation (IR), which
is then transformed into the ultimate target language.

Arrangements like the above have many advantages, including
making it easier to support new source languages and
platforms.

2025-01-24 CS 331 Spring 2025

LLVM

Code

Clang/LLVM C++ Compiler
C++ Native

Code
Native

Code GeneratorClang

33

PL Feature: Compilation & Interpretation
Interpretation

An interpreter takes code in some PL and executes it.

Two common misconceptions about interpretation:

▪ Interpretation is inherent to a PL.

▪ Compilation and interpretation are completely separate notions.

2025-01-24 CS 331 Spring 2025

Source

Language
Interpreter

Lua

Byte Code

Standard Lua Interpreter
Lua

Lua Byte Code
Interpreter

Lua

Compiler

Remember:
 • A compiler translates.
 • An interpreter executes.

34

PL Feature: Compilation & Interpretation
JIT Compilation

In Just-In-Time (JIT) compilation, code is compiled at runtime.

A typical strategy is to do static compilation of source code into a
byte code. Then execution begins, with the byte code being JIT
compiled to native code while the program is executing.

Because the second stage of compilation is done at runtime,
information that is only available at runtime can be used—for
example, which parts of the code execution spends the most
time in.

2025-01-24 CS 331 Spring 2025

Byte

Code

LuaJIT
Lua

Lua

Compiler

JIT

Compiler

35

	Slide 1: Programming Language Syntax Specification Introduction to Survey of Programming Languages PL Feature: Compilation & Interpretation
	Slide 2: Unit Overview Formal Languages & Grammars
	Slide 3
	Slide 4: Review Context-Free Languages — CFGs & CFLs
	Slide 5: Review Context-Free Languages — Parse Trees
	Slide 6: Review Context-Free Languages — Ambiguity
	Slide 7: Review Context-Free Languages — Leftmost & Rightmost Derivations
	Slide 8
	Slide 9: Programming Language Syntax Specification Introduction
	Slide 10: Programming Language Syntax Specification Backus-Naur Form [1/4]
	Slide 11: Programming Language Syntax Specification Backus-Naur Form [2/4]
	Slide 12: Programming Language Syntax Specification Backus-Naur Form [3/4]
	Slide 13: Programming Language Syntax Specification Backus-Naur Form [4/4]
	Slide 14: Programming Language Syntax Specification Extended Backus-Naur Form [1/2]
	Slide 15: Programming Language Syntax Specification Extended Backus-Naur Form [2/2]
	Slide 16: Programming Language Syntax Specification Grammars in Practice [1/5]
	Slide 17: Programming Language Syntax Specification Grammars in Practice [2/5]
	Slide 18: Programming Language Syntax Specification Grammars in Practice [3/5]
	Slide 19: Programming Language Syntax Specification Grammars in Practice [4/5]
	Slide 20: Programming Language Syntax Specification Grammars in Practice [5/5]
	Slide 21: Programming Language Syntax Specification Grammar + Additional Rules — The Dangling “else” Problem [1/2]
	Slide 22: Programming Language Syntax Specification Grammar + Additional Rules — The Dangling “else” Problem [2/2]
	Slide 23: Programming Language Syntax Specification Grammar + Additional Rules — Operator Precedence
	Slide 24: Unit Overview The Lua Programming Language
	Slide 25
	Slide 26: Introduction to Survey of Programming Languages From the First Day of Class — Course Overview: Topics
	Slide 27: Introduction to Survey of Programming Languages Overview
	Slide 28: Introduction to Survey of Programming Languages Some Terminology
	Slide 29: Introduction to Survey of Programming Languages Hello-World Programs
	Slide 30
	Slide 31: PL Feature: Compilation & Interpretation Runtime
	Slide 32: PL Feature: Compilation & Interpretation Compilation [1/2]
	Slide 33: PL Feature: Compilation & Interpretation Compilation [2/2]
	Slide 34: PL Feature: Compilation & Interpretation Interpretation
	Slide 35: PL Feature: Compilation & Interpretation JIT Compilation

