
Context-Free Languages
Thoughts on Assignment 1

CS 331 Programming Languages

Lecture Slides

Wednesday, January 22, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

2025-01-22 CS 331 Spring 2025

Unit Overview
Formal Languages & Grammars

Topics

▪ Basic concepts

▪ Introduction to formal languages & grammars

▪ The Chomsky hierarchy

▪ Regular languages

▪ Regular languages & regular expressions

▪ Context-free languages

▪ Programming language syntax specification

2

Review

2025-01-22 CS 331 Spring 2025 3

Review
Regular Languages — Regular Grammars & Languages

A regular grammar is a grammar, each of whose productions
looks like one of the following.

 A → ε A → b A → bC

A regular language is a language that is generated by some
regular grammar.

This is a regular grammar: S → ε

 S → t

 S → xB

 B → yS

Therefore, the language it generates is a regular language:

 {ε, xy, xyxy, xyxyxy, …, t, xyt, xyxyt, xyxyxyt, …}

2025-01-22 CS 331 Spring 2025

We allow a production
using the same
nonterminal twice: A → bA

4

Review
Regular Languages — Finite Automata [1/3]

A deterministic finite automaton (Latin plural “automata”), or
DFA, is a kind of recognizer for regular languages.

Rule. For each character in the alphabet, each state has exactly
one transition leaving it that is associated with that character.

2025-01-22 CS 331 Spring 2025

States

An accepting state

Transitions
cStart

b

Shorthand for two
transitions: one for
b and one for c.

The start state

b,c

Diagram
of a DFA b,c

5

Review
Regular Languages — Finite Automata [2/3]

To use a DFA as a recognizer:

▪ Start in the start state; proceed in a series of steps.

▪ At each step, read a character from the input and follow the
transition from at the current state, labeled with that character.

▪ If, when we reach the end of the input, we are in an accepting
state, then we accept the input.

The set of all inputs that are accepted is the language recognized
by the DFA.

Exercise

4. What language is recognized by
the DFA whose diagram is shown?

2025-01-22 CS 331 Spring 2025

cStart

b

b,c

b,c

6

Review
Regular Languages — Finite Automata [3/3]

To use a DFA as a recognizer:

▪ Start in the start state; proceed in a series of steps.

▪ At each step, read a character from the input and follow the
transition from at the current state, labeled with that character.

▪ If, when we reach the end of the input, we are in an accepting
state, then we accept the input.

The set of all inputs that are accepted is the language recognized
by the DFA.

Answer

4. What language is recognized by
the DFA whose diagram is shown?

The set of strings consisting either of b
then zero or more c’s, or of one or more c’s.

 {b, bc, bcc, bccc, …, c, cc, ccc, …}

2025-01-22 CS 331 Spring 2025

cStart

b

b,c

b,c

7

Review
Regular Languages & Regular Expressions — Regexes: Syntax

A regular expression is a generator for a regular language.

We specified the syntax of regular expressions by showing how to
build them up from small pieces.

▪ A single character is a regular expression: a.

▪ The empty string is a regular expression: ε.

If A and B are regular expressions, then so are the following.

▪ A*

▪ AB

▪ A|B

The above are listed from high to low precedence. All are left-
associative. Override precedence using parentheses.

▪ (A)

Here is a regular expression: (a|x)*cb

2025-01-22 CS 331 Spring 2025

Kleene star
(say KLAY-nee)

8

Review
Regular Languages & Regular Expressions — Regexes: Semantics

A regular expression is said to match certain strings.

Semantics of regular expressions:

▪ A single character matches itself, and nothing else.

▪ The empty string matches itself, and nothing else.

▪ A* matches the concatenation of zero of more strings, each of
which is matched by A.

▪ Note that A* matches the empty string, no matter what A is.

▪ AB matches the concatenation of any string matched by A and any
string matched by B.

▪ A|B matches all strings matched by A and also all strings matched
by B.

▪ (A) matches the same strings that are matched by A.

The language generated by a regular expression consists of all
strings that it matches.

2025-01-22 CS 331 Spring 2025 9

Review
Regular Languages & Regular Expressions — Regexes in Practice

Regular expression libraries typically include shortcuts in their
syntax. The ones below do not change which languages can be
generated. They may be used this semester in answers to
assignments/quizzes/exams.

. Matches any single character

[abcd] Matches a single a, b, c, or d, like a|b|c|d

[a-d] Same as above

[^a-d] Matches anything except a, b, c, or d

x+ Matches one or more x characters: x, xx, xxx, xxxx, etc.

x? Matches zero or one x characters—an optional x

\. Matches a dot: “.”

\\ Matches a backslash: “\”

Slashes might be delimiters: /[0-9]/ matches any ASCII digit.

2025-01-22 CS 331 Spring 2025

Using a backslash in this
way is called escaping.

10

Review
Regular Languages & Regular Expressions — Wrap-Up

The regular languages are precisely:

▪ The languages generated by regular grammars.

▪ The languages recognized by DFAs.

▪ The languages generated by regular expressions (in the strict
sense, with no features beyond those covered).

That is, these three classes of languages are identical.

We will use ideas about regular languages when we do lexical
analysis (lexing): breaking up a program into lexemes
(words, roughly).

2025-01-22 CS 331 Spring 2025 11

Context-Free Languages

2025-01-22 CS 331 Spring 2025 12

Context-Free Languages
Introduction

We now turn to the second smallest class of languages in the
Chomsky hierarchy: the context-free languages.

Context-free languages are important because, for most
programming languages, the set of all syntactically correct
programs forms a context-free language.

And for those PLs that do not have this property, it is still common
for the techniques used in dealing with context-free languages
to be useful.

Context-free languages, and the associated grammars, are thus
important in parsing: determining whether input (for example,
a program) is syntactically correct, and, if so, finding its
structure.

2025-01-22 CS 331 Spring 2025 13

Context-Free Languages
Context-Free Grammars & Languages — Definitions

A context-free grammar (CFG) is a grammar, each of whose
productions has a left-hand side consisting of a single
nonterminal.

All of the grammars we have looked at have been CFGs. In
particular, every regular grammar is a CFG.

A context-free language (CFL) is a language that is generated
by some context-free grammar.

Every regular language is a CFL. But there are context-free
languages that are not regular.

2025-01-22 CS 331 Spring 2025 14

Context-Free Languages
Context-Free Grammars & Languages — Examples [1/2]

Here is a CFG.

S → aSa

S → b

This grammar generates the following language.

 {b, aba, aabaa, aaabaaa, aaaabaaaa, …}

We can also write this language as follows.

 { akbak | k ≥ 0 }

As we have noted, this is not a regular language. But since it is
generated by a CFG, it is a CFL.

2025-01-22 CS 331 Spring 2025

“Context-free” refers to the fact that a nonterminal can be
expanded at any time. Chomsky defined a larger class of

grammars, context-sensitive grammars, in which productions
can sometimes only be applied if a nonterminal has certain
characters around it, that is, only in a certain context. We
will not study context-sensitive grammars this semester.

15

Context-Free Languages
Context-Free Grammars & Languages — Examples [2/2]

Regular grammars are not powerful enough to handle things like
matching parentheses. But CFGs are powerful enough.

Consider the following grammar—where “(” and “)” are terminal
symbols.

S → SS

S → (S)

S → ε

The language generated by the above grammar consists of all
sequences of properly matched parentheses. For example, here
is one string in this language.

 ((()())())()

2025-01-22 CS 331 Spring 2025 16

Context-Free Languages
Context-Free Grammars & Languages — Concise Notation

It is common for a CFG to have multiple productions with the same
left-hand side. As a shortcut, we allow writing the left-hand side
and the arrow only once, with the various right-hand sides
separated by vertical bars (“|”).

For example, our first CFG can be rewritten as follows.

S → aSa

S → b

We might place the right-hand sides on separate lines.

S → aSa

 | b

2025-01-22 CS 331 Spring 2025

S → aSa | b

17

Context-Free Languages
Parse Trees — Definition [1/3]

Parsing involves finding the structure of a program. One way to
represent this structure is to use a parse tree.

We introduce parse trees using Grammar A, below. To the right is
a derivation for the string ppy based on this CFG.

Grammar A

S → AB

A → pA | ε

B → x | y

2025-01-22 CS 331 Spring 2025

Derivation of ppy

 S

 AB

 Ay

 pAy

 ppAy

 ppy
There are no parse trees on
this slide! See the next slide
for a drawing of a parse tree.

18

Context-Free Languages
Parse Trees — Definition [2/3]

Grammar A

S → AB

A → pA | ε

B → x | y

A parse tree is a rooted tree with one symbol
in each node, based on a derivation.

▪ The root node holds the start symbol.

▪ The symbols a nonterminal is expanded into become its children—
left to right, one symbol per tree node.

Here is a parse tree based on the above derivation.

Every terminal symbol is in a leaf of the parse tree.
We can read off the final string by looking at the
leaves that contain terminal symbols.

2025-01-22 CS 331 Spring 2025

Derivation of ppy

 S

 AB

 Ay

 pAy

 ppAy

 ppy

Parse
Tree

S

BA

p A y

p A

19

Context-Free Languages
Parse Trees — Definition [3/3]

Another grammar, derivation, and associated parse tree. Here, “+”
is a terminal symbol.

Grammar B

S → S+S | n

Again, we can read off the final string by looking at the leaves that
contain terminal symbols.

2025-01-22 CS 331 Spring 2025

Derivation of n+n+n

 S

 S+S

 S+S+S

 n+S+S

 n+n+S

 n+n+n

S

+ SS

+S S n

nn

Parse Tree

20

Remember: a
derivation is a
list of strings;
a parse tree is

a tree.

Context-Free Languages
Parse Trees — TRY IT (Exercises)

Grammar C

S → XY

X → a | b

Y → cY | c

Exercises

1. Based on Grammar C and the given derivation, draw a parse
tree for the string ac.

2. Based on Grammar C, draw a parse tree for the string bcc.

2025-01-22 CS 331 Spring 2025

Derivation of ac

 S

 XY

 aY

 ac

21

Context-Free Languages
Parse Trees — TRY IT (Answers)

Grammar C

S → XY

X → a | b

Y → cY | c

Answers

1. Based on Grammar C and the given
derivation, draw a parse tree for the string ac.

2. Based on Grammar C, draw a
parse tree for the string bcc.

2025-01-22 CS 331 Spring 2025

Derivation of ac

 S

 XY

 aY

 ac

S

YX

a c
S

YX

Ycb

c

In both
exercises,
the answer
is unique.

22

Context-Free Languages
Parse Trees — TRY IT (Note)

If you drew something like this for Exercise 1 …

… then be aware that the above is not a parse tree.

A parse tree has one symbol in each node.

2025-01-22 CS 331 Spring 2025

S

a c

S

YX

a c

XY

NOT a Parse Tree

Parse Tree

23

Context-Free Languages
Ambiguity — Definition

Grammar B

S → S+S | n

There is another parse tree for n+n+n based on
the above grammar. It is shown below.

This means that the string n+n+n has
two possible structures.

A CFG in which a single string has more than one parse tree, is
said to be ambiguous.

So Grammar B is ambiguous.

2025-01-22 CS 331 Spring 2025

S

+ SS

+S Sn

nn

Another
Parse Tree

S

+ SS

+S S n

nn

Parse Tree

24

Context-Free Languages
Ambiguity — Eliminating Ambiguity [1/3]

Grammar B

S → S+S | n

Ambiguity is a property of grammars, not of languages. And it is
generally a property that we do not like.

Grammar B is ambiguous; however, in this case we can actually
find a non-ambiguous CFG that generates the same language.

Before finding such a grammar, we first note that, assuming “+”
represents addition, we prefer parse tree #1, since it expresses
the left associativity that we usually want addition to have:
n+n+n = (n+n)+n.

2025-01-22 CS 331 Spring 2025

SParse Tree

 #1

SParse Tree

 #2
+ SS

+S S n

nn

+ SS

+S Sn

nn

25

Context-Free Languages
Ambiguity — Eliminating Ambiguity [2/3]

Grammar B

S → S+S | n

Below is a non-ambiguous grammar that generates the same
language and expresses the left-associativity of “+”. Also
shown: a derivation of n+n+n and the unique parse tree.

Grammar B’

S → S+n | n

2025-01-22 CS 331 Spring 2025

This parse tree
is unique!

SParse Tree

 #1

SParse Tree

 #2
+ SS

+S S n

nn

+ SS

+S Sn

nn

S

+ nS

+S n

n

Derivation

 S

 S+n

 S+n+n

 n+n+n

Parse Tree

26

Context-Free Languages
Ambiguity — Eliminating Ambiguity [3/3]

Sometimes ambiguity cannot be eliminated. There are CFLs that
are only generated by ambiguous CFGs. Such a CFL is
inherently ambiguous.

Here is a standard example of an inherently ambiguous CFL.

 { ambmcndn | m, n ≥ 0 } ∪ { apbrcrdp | p, r ≥ 0 }

It can be demonstrated that, no matter how we write a CFG for
this language, there will be some string that has two different
parse trees.

Remember:

▪ Ambiguity is a property of grammars (CFGs).

▪ Inherent ambiguity is a property of languages (CFLs).

2025-01-22 CS 331 Spring 2025

Same

Same Same

Same

27

Context-Free Languages
Leftmost & Rightmost Derivations [1/3]

The CFG below generates only xyz. There are multiple derivations.

Grammar D

S → ABC

A → x

B → y

C → z

But there is only one parse tree. Grammar D is not ambiguous.

2025-01-22 CS 331 Spring 2025

Derivation #1

 S

 ABC

 xBC

 xyC

 xyz

Derivation #2

 S

 ABC

 ABz

 Ayz

 xyz

Derivation #3

 S

 ABC

 AyC

 Ayz

 xyz

S

B CA

x y z

28

Context-Free Languages
Leftmost & Rightmost Derivations [2/3]

Even though they correspond to the same parse tree, these three
derivations of xyz differ in a noteworthy way.

▪ In derivation #1, the leftmost nonterminal it expanded at each
step. We call this a leftmost derivation.

▪ In derivation #2, the rightmost nonterminal it expanded at each
step. We call this a rightmost derivation.

▪ Derivation #3 is neither leftmost nor rightmost.

2025-01-22 CS 331 Spring 2025

#1: Leftmost
derivation

 S

 ABC

 xBC

 xyC

 xyz

#2: Rightmost
derivation

 S

 ABC

 ABz

 Ayz

 xyz

#3: Neither

 S

 ABC

 AyC

 Ayz

 xyz

29

Context-Free Languages
Leftmost & Rightmost Derivations [3/3]

These concepts will come up later, in our study of parsing.

▪ A parser goes through the steps required to find a derivation. Some
parsers go through the derivation in forward order, expanding the
leftmost nonterminal first, producing a leftmost derivation.

▪ Other parsers go though the derivation in reverse, repeatedly
contracting a substring to a nonterminal. Typically, the left part of
the input is contracted first. Viewed in forward order, the rightmost
nonterminal is expanded first, producing a rightmost derivation.

2025-01-22 CS 331 Spring 2025

#1: Leftmost
derivation

 S

 ABC

 xBC

 xyC

 xyz

#2: Rightmost
derivation

 S

 ABC

 ABz

 Ayz

 xyz

#3: Neither

 S

 ABC

 AyC

 Ayz

 xyz

30

Context-Free Languages
Notes

Do not confuse parse trees with derivations!

▪ A parse tree is a rooted tree.

▪ A derivation is a list of strings.

For every parse tree, there is a corresponding leftmost derivation
and rightmost derivation.

Ambiguity is about multiple parse trees, not multiple derivations.

2025-01-22 CS 331 Spring 2025

Leftmost
Derivation

 S

 XY

 aY

 ac

Parse Tree S

YX

a c

Rightmost
Derivation

 S

 XY

 Xc

 ac

One
symbol
in each
node

31

Thoughts on Assignment 1

2025-01-22 CS 331 Spring 2025 32

Thoughts on Assignment 1

Three quick notes:

▪ Turn in your work as a PDF file.

▪ The point of the first exercise is making sure you are able to
execute Lua code. You will be writing a lot of Lua this semester.
Now is the time to be sure you can execute it.

▪ We have covered the required material for all parts of the
assignment, except the last exercise. This concerns something
called BNF grammars, which we will discuss next time.

2025-01-22 CS 331 Spring 2025 33

	Slide 1: Context-Free Languages Thoughts on Assignment 1
	Slide 2: Unit Overview Formal Languages & Grammars
	Slide 3
	Slide 4: Review Regular Languages — Regular Grammars & Languages
	Slide 5: Review Regular Languages — Finite Automata [1/3]
	Slide 6: Review Regular Languages — Finite Automata [2/3]
	Slide 7: Review Regular Languages — Finite Automata [3/3]
	Slide 8: Review Regular Languages & Regular Expressions — Regexes: Syntax
	Slide 9: Review Regular Languages & Regular Expressions — Regexes: Semantics
	Slide 10: Review Regular Languages & Regular Expressions — Regexes in Practice
	Slide 11: Review Regular Languages & Regular Expressions — Wrap-Up
	Slide 12
	Slide 13: Context-Free Languages Introduction
	Slide 14: Context-Free Languages Context-Free Grammars & Languages — Definitions
	Slide 15: Context-Free Languages Context-Free Grammars & Languages — Examples [1/2]
	Slide 16: Context-Free Languages Context-Free Grammars & Languages — Examples [2/2]
	Slide 17: Context-Free Languages Context-Free Grammars & Languages — Concise Notation
	Slide 18: Context-Free Languages Parse Trees — Definition [1/3]
	Slide 19: Context-Free Languages Parse Trees — Definition [2/3]
	Slide 20: Context-Free Languages Parse Trees — Definition [3/3]
	Slide 21: Context-Free Languages Parse Trees — TRY IT (Exercises)
	Slide 22: Context-Free Languages Parse Trees — TRY IT (Answers)
	Slide 23: Context-Free Languages Parse Trees — TRY IT (Note)
	Slide 24: Context-Free Languages Ambiguity — Definition
	Slide 25: Context-Free Languages Ambiguity — Eliminating Ambiguity [1/3]
	Slide 26: Context-Free Languages Ambiguity — Eliminating Ambiguity [2/3]
	Slide 27: Context-Free Languages Ambiguity — Eliminating Ambiguity [3/3]
	Slide 28: Context-Free Languages Leftmost & Rightmost Derivations [1/3]
	Slide 29: Context-Free Languages Leftmost & Rightmost Derivations [2/3]
	Slide 30: Context-Free Languages Leftmost & Rightmost Derivations [3/3]
	Slide 31: Context-Free Languages Notes
	Slide 32
	Slide 33: Thoughts on Assignment 1

