
Regular Languages & Regular Expressions

CS 331 Programming Languages

Lecture Slides

Friday, January 17, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

2025-01-17 CS 331 Spring 2025

Unit Overview
Formal Languages & Grammars

Topics

▪ Basic concepts

▪ Introduction to formal languages & grammars

▪ The Chomsky hierarchy

▪ Regular languages

▪ Regular languages & regular expressions

▪ Context-free languages

▪ Programming language syntax specification









2

Review

2025-01-17 CS 331 Spring 2025 3

2025-01-17 CS 331 Spring 2025

Review
Formal Languages & Grammars — Formal Languages

A (formal) language is a set of strings.

Two ways to describe a formal language:

▪ With a generator: something that can produce the strings in a
formal language—all of them, and nothing else.

▪ With a recognizer: a way of determining whether a given string
lies in the formal language.

It is common to begin with a generator and then construct a
recognizer based on it.

Not the same as a
programming language!

4

Review
Formal Languages & Grammars — Grammars [1/2]

A (phrase-structure) grammar is a list of one or more
productions. A production is a rule for altering strings by
substituting one substring for another.

Terminal symbols—allowed in the final
string in a derivation. For now, these
are lower-case letters.

Nonterminal symbols—not allowed in the final string. For now,
these are upper-case letters. One nonterminal is the start
symbol. For now: S.

An important application of grammars is specifying programming-
language syntax.

2025-01-17 CS 331 Spring 2025

Grammar

S → yS

S → x

S → ε

5

Review
Formal Languages & Grammars — Grammars [2/2]

Grammar

1. S → yS

2. S → x

3. S → ε

A grammar is a kind of language
generator. The language generated
consists of all strings for which there is a derivation.

Q. What language does this grammar generate?

A. The set of all strings that consist of zero or more y’s followed by
an optional x.

{ε, y, yy, yyy, …, x, yx, yyx, yyyx, …}

2025-01-17 CS 331 Spring 2025

Derivation of yyy

 S

 yS

 yyS

 yyyS

 yyy

1

1

1

3

No “ε”
appears here.

The numbers and underlining
are annotations that I find
helpful. They are not actually
part of the derivation.

A derivation is a list of strings.

6

Review
Regular Languages — Regular Grammars & Languages

A regular grammar is a grammar, each of whose productions
looks like one of the following.

 A → ε A → b A → bC

A regular language is a language that is generated by some
regular grammar.

This is a regular grammar: S → ε

 S → t

 S → xB

 B → yS

Therefore, the language it generates is a regular language:

 {ε, xy, xyxy, xyxyxy, …, t, xyt, xyxyt, xyxyxyt, …}

2025-01-17 CS 331 Spring 2025

We allow a production
using the same
nonterminal twice: A → bA

7

Review
Regular Languages — Finite Automata [1/3]

A deterministic finite automaton (Latin plural “automata”), or
DFA, is a kind of recognizer for regular languages.

A DFA has:

▪ A finite collection of states. One is the start state. Some may be
accepting states.

▪ Transitions, each beginning at a state, ending at a state, and
associated with a character in the alphabet.

Rule. For each character in the alphabet, each state has exactly
one transition leaving it that is associated with that character.

2025-01-17 CS 331 Spring 2025

States

An accepting state

Transitions

Shorthand for two
transitions: one for
x and one for y.

The start state

Diagram
of a DFA x

yStart

x,y

x,y

8

Review
Regular Languages — Finite Automata [2/3]

To use a DFA as a recognizer:

▪ Start in the start state; proceed in a series of steps.

▪ At each step, read a character from the input and follow the
transition beginning at the current state and labeled with the
character that was read.

▪ If, when we reach the end of the input, we are in an accepting
state, then we accept the input.

The set of all inputs that are accepted is the language recognized
by the DFA.

Q. What language is recognized by
the DFA diagrammed here?

A. The set of all strings that consist of zero
or more y’s followed by an optional x.

{ε, y, yy, yyy, …, x, yx, yyx, yyyx, …}

2025-01-17 CS 331 Spring 2025

x
yStart

x,y

x,y

9

Review
Regular Languages — Finite Automata [3/3]

Fact. The languages that are recognized by DFAs are precisely the
regular languages.

That is:

▪ For each DFA, the language it recognizes is a regular language.

▪ For each regular language, there is a DFA that recognizes it.

A DFA is a kind of state machine: it has a state, and it transitions
to a new state based, in part, on its current state.

We will see the state-machine idea in code form later in the
semester when we write code to do lexical analysis.

2025-01-17 CS 331 Spring 2025 10

Regular Languages & Regular
Expressions

2025-01-17 CS 331 Spring 2025 11

Regular Languages & Regular Expressions
Regular Expressions — Introduction

We wish to define a kind of generator called a regular expression—
or sometimes regex, for short. We will cover both their syntax
and their semantics.

Before we do this, let us consider a kind of expression that all of us
are familiar with: the arithmetic expression.

As a warm-up, we will describe the syntax and semantics of
arithmetic expressions, using informal methods. Afterward, we
will describe regular expressions in a similar way.

2025-01-17 CS 331 Spring 2025 12

Regular Languages & Regular Expressions
Regular Expressions — Warm-Up: Arithmetic Expressions [1/4]

An arithmetic expression is an expression
involving numbers, identifiers, and arithmetic
operators (+ – * /) as usual.

Here is an example of an arithmetic expression.

 34*(3–n)+(5.6/g+3)

We describe the syntax and semantics of arithmetic expressions.

▪ Syntax refers to correct structure. Knowing the syntax of
arithmetic expressions allows us to say whether some given string
is a correctly written arithmetic expression, and, if it is, how it is put
together.

▪ Semantics refers to meaning. Knowing the semantics of arithmetic
expressions allows us to find their numerical values.

2025-01-17 CS 331 Spring 2025

We are not
describing regular
expressions here!

13

Regular Languages & Regular Expressions
Regular Expressions — Warm-Up: Arithmetic Expressions [2/4]

We can specify the syntax of arithmetic expressions
by showing how to build them from small pieces.

First we list the pieces.

▪ A numeric literal is an arithmetic expression: 26.5.

▪ An identifier (think “variable”) is an arithmetic expression: x.

Next we list the ways to build new arithmetic expressions out of
existing ones. If A and B are arithmetic expressions, then so are
all of the following.

▪ –A

▪ A*B

▪ A/B

▪ A+B

▪ A–B

2025-01-17 CS 331 Spring 2025

We are not
describing regular
expressions here!

14

Regular Languages & Regular Expressions
Regular Expressions — Warm-Up: Arithmetic Expressions [3/4]

The list, again:

▪ –A

▪ A*B

▪ A/B

▪ A+B

▪ A–B

The above goes from highest precedence (unary “–”) to lowest
(binary “–”). Unary minus is right-associative, while all four
binary operators are left-associative.

Left-associative means, for example, that 1–2–3 is the same as
(1–2)–3, not 1–(2–3). Right-associative is the reverse.

If we want to override these precedence & associativity rules, then
we can use parentheses for grouping. If particular, if A is an
arithmetic expression, then so is the following.

▪ (A)

2025-01-17 CS 331 Spring 2025

We are not
describing regular
expressions here!

15

Regular Languages & Regular Expressions
Regular Expressions — Warm-Up: Arithmetic Expressions [4/4]

We have defined the syntax of arithmetic
expressions. Using the rules covered, we can
look at some text and determine whether the
text is actually an arithmetic expression. We can also figure out
the structure of the expression: how it is put together.

However, we have not explained how to find the value of an
arithmetic expression. The rules covered so far do not tell us
what such an expression means: its semantics.

We can specify the semantics of arithmetic expressions based on
our description of the syntax.

▪ The value of a numeric literal is its numeric value.

▪ The value of an identifier is the value of the variable it names.

▪ The value of –A is –1 times the value of A.

▪ The value of A*B is the product of the value of A and the value of B.

▪ Etc.

2025-01-17 CS 331 Spring 2025

We are not
describing regular
expressions here!

16

Regular Languages & Regular Expressions
Regular Expressions — Syntax [1/2]

Now we specify the syntax of regular expressions (or regexes).
As we did with arithmetic expressions, we do this by showing
how to build them from small pieces.

First we list the pieces.

▪ A single character is a regular expression: a.

▪ The empty string is a regular expression: ε.

Next we list the ways to build new regular expressions out of
existing ones. If A and B are regular expressions, then so are all
of the following.

▪ A*

▪ AB

▪ A|B

2025-01-17 CS 331 Spring 2025 17

Regular Languages & Regular Expressions
Regular Expressions — Syntax [2/2]

The list, again:

▪ A*

▪ AB

▪ A|B

The above goes from high to low precedence. All are left-
associative.

Parentheses can be used for grouping, to override precedence &
associativity. In particular, if A is a regular expression, then so
is the following.

▪ (A)

For example, here is a regular expression: (a|x)*cb

2025-01-17 CS 331 Spring 2025 18

Regular Languages & Regular Expressions
Regular Expressions — Semantics [1/2]

We can now determine whether a given string is a regular
expression, and, if it is, find its structure. Next we discuss what
regular expressions mean: their semantics.

Regular expressions are a kind of language generator. A regular
expression is said to match certain strings. The language
generated by the regular expression consists of all strings that it
matches.

Once again, we can describe the semantics based on our
description of the syntax.

Here are the rules for what the pieces match.

▪ A single character matches itself, and nothing else.

▪ The empty string matches itself, and nothing else.

2025-01-17 CS 331 Spring 2025 19

Regular Languages & Regular Expressions
Regular Expressions — Semantics [2/2]

Now suppose that A and B are regular expressions.

▪ A* matches the concatenation of zero of more strings, each of
which is matched by A.

▪ Note that A* matches the empty string, no matter what A is.

▪ AB matches the concatenation of any string matched by A and any
string matched by B.

▪ A|B matches all strings matched by A and also all strings matched
by B.

▪ (A) matches the same strings that are matched by A.

The asterisk (*), used as above, is called the Kleene Star, after
Stephen Kleene, a 20th century mathematician who worked in
mathematical logic. “Kleene” is, somewhat mysteriously,
pronounced KLAY-nee.

2025-01-17 CS 331 Spring 2025 20

Regular Languages & Regular Expressions
Regular Expressions — Language Generated [1/3]

Again, the language generated by a regular expression consists of
all strings that it matches.

Fact. The languages that are generated by regular expressions are
precisely the regular languages.

That is:

▪ For each regular expression, the language it generates is a regular
language.

▪ For each regular language, there is regular expression that
generates it.

2025-01-17 CS 331 Spring 2025 21

Regular Languages & Regular Expressions
Regular Expressions — Language Generated [2/3]

Consider the regular expression mentioned previously:

 (a|x)*cb

What language does this regular expression generate?

Each of the expressions “a” and “x” matches itself.

The expression “a|x” matches two strings: “a” and “x”.

So the expression “(a|x)*” matches any string consisting of
nothing but a’s and x’s. For example, it matches
“aaaxaxaaaxxx”. It also matches the empty string.

We conclude that the expression “(a|x)*cb” matches zero or more
a’s and/or x’s, followed by c, followed by b. For example, it
matches cb, acb, xcb, aacb, axcb, xacb, xxcb, aaacb, aaxcb,
etc.

2025-01-17 CS 331 Spring 2025 22

Regular Languages & Regular Expressions
Regular Expressions — Language Generated [3/3]

Watch out for precedence! In particular, the Kleene star is a high-
precedence operator.

For example, as we have said, this regular expression

 (a|x)*

matches any string consisting of nothing but a’s and x’s.

On the other hand, the following two regular expressions

 a|x*

 a|(x*)

(which are essentially the same) match the string “a”, along with
any string consisting of zero or more x’s: a, ε, x, xx, xxx, etc.

2025-01-17 CS 331 Spring 2025 23

Regular Languages & Regular Expressions
Regular Expressions — TRY IT #1 (Exercise)

Exercise

1. What language does the following regular expression generate?

(xy)*(|t)

2025-01-17 CS 331 Spring 2025

What comes before the
vertical bar? The empty string.
You can think of this as “(ε|t)”,
although we usually would not
write it that way.

24

Regular Languages & Regular Expressions
Regular Expressions — TRY IT #1 (Answer)

Answer

1. What language does the following regular expression generate?

(xy)*(|t)

The language containing all strings that consist of zero or more
repetitions of “xy” followed by an optional “t”:

 {ε, xy, xyxy, xyxyxy, …, t, xyt, xyxyt, xyxyxyt, …}

2025-01-17 CS 331 Spring 2025 25

Regular Languages & Regular Expressions
Regular Expressions — TRY IT #2 (Exercises)

Consider the language containing all strings consisting of zero or
more x’s, followed by either y or z. That is,

{ y, xy, xxy, xxxy, xxxxy, …, z, xz, xxz, xxxz, xxxxz, … }

This is a regular language.

Exercises

2. Write a regular expression that generates the above language.

3. Draw the diagram of a DFA that recognizes this language.

2025-01-17 CS 331 Spring 2025 26

Regular Languages & Regular Expressions
Regular Expressions — TRY IT #2 (Answers)

Consider the language containing all strings consisting of zero or
more x’s, followed by either y or z. That is,

{ y, xy, xxy, xxxy, xxxxy, …, z, xz, xxz, xxxz, xxxxz, … }

This is a regular language.

Answers

2. Write a regular expression that generates the above language.

x*(y|z) OR x*y|x*z

3. Draw the diagram of a DFA that recognizes this language.

2025-01-17 CS 331 Spring 2025

x

Start

x,y,z
x,y,z

y,z Other
answers are

possible.

27

Regular Languages & Regular Expressions
Regular Expressions in Practice [1/7]

Regular-expression libraries are available in many programming
languages. They are used by various command-line tools and
advanced search options in some applications. We look at the
syntax typically used.

It is common—but not universal!—for slashes to be used as
delimiters for regular expressions (for example, /a*(b|c)/).
These are not part of the regular expression itself, just as
beginning and ending quotes are not part of the content of a
string ("abc").

Here and later in the semester we will
refer to characters used as delimiters
using the terminology shown.

2025-01-17 CS 331 Spring 2025

Parentheses ()

 Brackets []

 Braces { }

 Angle brackets < >

28

Regular Languages & Regular Expressions
Regular Expressions in Practice [2/7]

Regular-expression libraries typically accept something like the
syntax we have described, except that “ε” is replaced by an
actual empty string. In addition, a number of shortcuts are
commonly used.

First, “.” matches any single character, except possibly the end-of-

line character.

Second, brackets with a list of characters between them will match
any one of the characters in the list. The following two regular
expressions match the same strings.

 /[qwerty]/

 /(q|w|e|r|t|y)/

2025-01-17 CS 331 Spring 2025 29

Regular Languages & Regular Expressions
Regular Expressions in Practice [3/7]

With the bracket syntax, “-” specifies a range of consecutive

characters. The following expressions match the same strings.

 /[0-9]/

 /[0123456789]/

 /(0|1|2|3|4|5|6|7|8|9)/

So the following will match any single ASCII letter.

 /[A-Za-z]/

Placing “^” just after the opening bracket means that all characters

not in the list are matched. So this regular expression

 /[^A-Za-z]/

matches any single character that is not an ASCII letter.

2025-01-17 CS 331 Spring 2025 30

Regular Languages & Regular Expressions
Regular Expressions in Practice [4/7]

Third, “+” means one-or-more, in the same way that “*” means

zero-or-more. So the following two expressions match the same
strings.

 /(abc)+/

 /abc(abc)*/

Fourth, “?” means zero-or-one. So the following two expressions

match the same strings.

 /x(abc)?/

 /x|xabc/

2025-01-17 CS 331 Spring 2025 31

Regular Languages & Regular Expressions
Regular Expressions in Practice [5/7]

Last, the various special characters above
are treated as ordinary characters when
preceded by a backslash(\); this is
called escaping.

For example, “.” matches any character,
while “\.” matches only “.”.

To match a single backslash, use an escaped backslash: “\\”.

To match a slash, use an escaped slash: “\/”.

The extras we have mentioned so far are all just shortcuts. They
make regular expressions more convenient, but they do not
allow for the generation of any new languages.

In answers to assignments, quizzes, and exams in this class, I will
allow any of the shortcuts we have mentioned so far.

2025-01-17 CS 331 Spring 2025

The rules for backslash
escaping vary from one

regular-expression library
to another. See your

library’s documentation.

32

Regular Languages & Regular Expressions
Regular Expressions in Practice [6/7]

In regex libraries, it is common for matching functions to
determine whether a regex matches some substring of a given
string. To match the whole string, one can typically use “^”,
which matches the beginning of a string, and “$”, which
matches the end. For example:

 /^ab*c$/

A program that applies a regex to a file will typically try to match
each line, in turn.

TO DO

▪ Try out some practical regexes.

2025-01-17 CS 331 Spring 2025

See regex.py, regex2cpp.

33

Regular Languages & Regular Expressions
Regular Expressions in Practice [7/7]

Many programming languages & libraries include facilities that
make their “regular expressions”—so called—decidedly non-
regular. That is, they allow for the generation of languages that
are not regular.

One way to do this is to allow a requirement that two sections of a
string are the same. For example, the following regex, used in
Perl or Python, matches strings b, aba, aabaa, aaabaaa, etc.

 /(a*)b\1/

The language generated by this expression is the same language
given earlier as an example of a language that is not regular.
For the purposes of this class, we do not consider the above to
be a regular expression.

2025-01-17 CS 331 Spring 2025 34

Regular Languages & Regular Expressions
Wrap-Up

Regular languages form the smallest of the four classes of
languages in the Chomsky hierarchy. These languages, and
related ideas, are used in lexical analysis (lexing), and in text
search/replace.

A regular language is one that can be generated by a regular
grammar, which is a grammar in which every production has
one of the following three forms.

 A → ε A → b A → bC

Regular languages are precisely those languages that are
recognized by some DFA.

Regular languages are the languages that can be generated by a
regular expression—in the strict sense of the term.

2025-01-17 CS 331 Spring 2025 35

	Slide 1: Regular Languages & Regular Expressions
	Slide 2: Unit Overview Formal Languages & Grammars
	Slide 3
	Slide 4: Review Formal Languages & Grammars — Formal Languages
	Slide 5: Review Formal Languages & Grammars — Grammars [1/2]
	Slide 6: Review Formal Languages & Grammars — Grammars [2/2]
	Slide 7: Review Regular Languages — Regular Grammars & Languages
	Slide 8: Review Regular Languages — Finite Automata [1/3]
	Slide 9: Review Regular Languages — Finite Automata [2/3]
	Slide 10: Review Regular Languages — Finite Automata [3/3]
	Slide 11
	Slide 12: Regular Languages & Regular Expressions Regular Expressions — Introduction
	Slide 13: Regular Languages & Regular Expressions Regular Expressions — Warm-Up: Arithmetic Expressions [1/4]
	Slide 14: Regular Languages & Regular Expressions Regular Expressions — Warm-Up: Arithmetic Expressions [2/4]
	Slide 15: Regular Languages & Regular Expressions Regular Expressions — Warm-Up: Arithmetic Expressions [3/4]
	Slide 16: Regular Languages & Regular Expressions Regular Expressions — Warm-Up: Arithmetic Expressions [4/4]
	Slide 17: Regular Languages & Regular Expressions Regular Expressions — Syntax [1/2]
	Slide 18: Regular Languages & Regular Expressions Regular Expressions — Syntax [2/2]
	Slide 19: Regular Languages & Regular Expressions Regular Expressions — Semantics [1/2]
	Slide 20: Regular Languages & Regular Expressions Regular Expressions — Semantics [2/2]
	Slide 21: Regular Languages & Regular Expressions Regular Expressions — Language Generated [1/3]
	Slide 22: Regular Languages & Regular Expressions Regular Expressions — Language Generated [2/3]
	Slide 23: Regular Languages & Regular Expressions Regular Expressions — Language Generated [3/3]
	Slide 24: Regular Languages & Regular Expressions Regular Expressions — TRY IT #1 (Exercise)
	Slide 25: Regular Languages & Regular Expressions Regular Expressions — TRY IT #1 (Answer)
	Slide 26: Regular Languages & Regular Expressions Regular Expressions — TRY IT #2 (Exercises)
	Slide 27: Regular Languages & Regular Expressions Regular Expressions — TRY IT #2 (Answers)
	Slide 28: Regular Languages & Regular Expressions Regular Expressions in Practice [1/7]
	Slide 29: Regular Languages & Regular Expressions Regular Expressions in Practice [2/7]
	Slide 30: Regular Languages & Regular Expressions Regular Expressions in Practice [3/7]
	Slide 31: Regular Languages & Regular Expressions Regular Expressions in Practice [4/7]
	Slide 32: Regular Languages & Regular Expressions Regular Expressions in Practice [5/7]
	Slide 33: Regular Languages & Regular Expressions Regular Expressions in Practice [6/7]
	Slide 34: Regular Languages & Regular Expressions Regular Expressions in Practice [7/7]
	Slide 35: Regular Languages & Regular Expressions Wrap-Up

