
The Chomsky Hierarchy
Regular Languages

CS 331 Programming Languages

Lecture Slides

Wednesday, January 15, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

2025-01-15 CS 331 Spring 2025

Unit Overview
Formal Languages & Grammars

Topics

▪ Basic concepts

▪ Introduction to formal languages & grammars

▪ The Chomsky hierarchy

▪ Regular languages

▪ Regular languages & regular expressions

▪ Context-free languages

▪ Programming language syntax specification

2

Review

2025-01-15 CS 331 Spring 2025 3

2025-01-15 CS 331 Spring 2025

Review
Basic Concepts

Dynamic: at runtime.

Static: before runtime.

Syntax: the correct structure of code.

Semantics: the meaning of code.

Coming Up

▪ How the syntax of a programming language is specified.

▪ How such specifications are used.

▪ Writing a lexer & parser; the latter checks syntactic correctness.

▪ Later, a brief study of semantics.

4

2025-01-15 CS 331 Spring 2025

Review
Intro. To Formal Lang’s & Grammars — Formal Languages [1/2]

A (formal) language is a set of strings.

Alphabet: the set of characters that may appear in the strings.

For now, we write strings without quotes (for example, abc). We
represent the empty string with a lower-case Greek epsilon (ε).

Example of a language over {0, 1}:

{ε, 01, 0101, 010101, 01010101, …}

Important examples of formal languages:

▪ The set of all lexemes in some category, for some programming
language (e.g., the set of all legal C++ identifiers).

▪ The set of all syntactically correct programs, in some programming
language (e.g., the set of all syntactically correct Lua programs).

Not the same as a
programming language!

5

2025-01-15 CS 331 Spring 2025

Review
Intro. To Formal Lang’s & Grammars — Formal Languages [2/2]

Two ways to describe a formal language:

▪ With a generator: something that can produce the strings in a
formal language—all of them, and nothing else.

▪ With a recognizer: a way of determining whether a given string
lies in the formal language.

Typically:

▪ Generators are easier to construct.

▪ Recognizers are more useful.

It is common begin with a generator and then construct a
recognizer based on it. This construction process might be
automated (but in this class it will not be).

6

Review
Intro. To Formal Lang’s & Grammars — Grammars [1/4]

A (phrase-structure) grammar is a kind of language generator.

Needed

▪ A collection of terminal symbols. This is our alphabet.

▪ A collection of nonterminal symbols. These are like variables that
eventually turn into something else. One nonterminal symbol is the
start symbol.

Our conventions for symbols—for now:

▪ Terminal symbols are lower-case letters (a b x)

▪ Nonterminal symbols are upper-case letters (C Q S)

▪ The start symbol is S.

2025-01-15 CS 331 Spring 2025 7

Review
Intro. To Formal Lang’s & Grammars — Grammars [2/4]

A grammar is a list of one or more productions. A production is a
rule for altering strings by substituting one substring for
another. The strings are made of terminal and nonterminal
symbols.

Here is a grammar with three productions.

S → xSy

S → a

S → ε

An important application of grammars is specifying programming-
language syntax. Since the 1970s, nearly all programming
languages have used a grammar for their a syntax specification.

2025-01-15 CS 331 Spring 2025 8

Review
Intro. To Formal Lang’s & Grammars — Grammars [3/4]

Grammar

1. S → xSy

2. S → a

3. S → ε

Using a grammar:

▪ Begin with the start symbol.

▪ Repeat:

▪ Apply a production, replacing the left-hand side of the production (which
must be a contiguous collection of symbols in the current string) with

the right-hand side.

▪ We can stop only when there are no more nonterminals.

The result is a derivation of the final string.

2025-01-15 CS 331 Spring 2025

Derivation of xxxyyy

 S

 xSy

 xxSyy

 xxxSyyy

 xxxyyy

1

1

1

3

No “ε”
appears here.

The numbers and underlining
are annotations that I find
helpful. They are not actually
part of the derivation.

A derivation is a list of strings.

9

Review
Intro. To Formal Lang’s & Grammars — Grammars [4/4]

Grammar

S → xSy

S → a

S → ε

The language generated by a grammar consists of all strings for
which there is a derivation.

▪ So xxxyyy lies in the language generated by the above grammar.

Q. What language does this grammar generate?

A. The set of all strings that consist of zero or more x’s, followed
by an optional a, followed by the same number of y’s as x’s.

 {ε, xy, xxyy, xxxyyy, …, a, xay, xxayy, xxxayyy, …}

2025-01-15 CS 331 Spring 2025

Avoid saying,
“any number of …”.

10

Review
Intro. To Formal Lang’s & Grammars — TRY IT #3 (Exercises)

Grammar D

S → AB

A → x

B → y

Exercises

6. Based on Grammar D, write a derivation for xy.

2025-01-15 CS 331 Spring 2025 11

Review
Intro. To Formal Lang’s & Grammars — TRY IT #3 (Answers)

Grammar D

1. S → AB

2. A → x

3. B → y

Answers

6. Based on Grammar D, write a derivation for xy.

See above. Either answer is correct.

2025-01-15 CS 331 Spring 2025

Derivation #2 of xy

 S

 AB

 Ay

 xy

1

3

2

Derivation #1 of xy

 S

 AB

 xB

 xy

1

2

3

12

Review
Intro. To Formal Lang’s & Grammars — TRY IT #4 (Exercises)

Exercises

7. Write a grammar that generates the following language:
{ ab, abb, abbb, abbbb, abbbbb, abbbbbb, … }

8. How could we change the grammar from Exercise 7 so that the
language it generates also contains the string “a”?

2025-01-15 CS 331 Spring 2025 13

Review
Intro. To Formal Lang’s & Grammars — TRY IT #4 (Answers)

Answers

7. Write a grammar that generates the following language:
{ ab, abb, abbb, abbbb, abbbbb, abbbbbb, … }

Grammar

S → aX

X → Xb

X → b

8. How could we change the grammar from Exercise 7 so that the
language it generates also contains the string “a”?

Replace the production “X → b” with “X → ε”.

2025-01-15 CS 331 Spring 2025

There are a number of correct
answers. For example, “X → bX”
would also work here.

14

The Chomsky Hierarchy

2025-01-15 CS 331 Spring 2025 15

The Chomsky Hierarchy
Introduction

In the late 1950s, linguist Noam Chomsky described a hierarchy of
categories of formal languages, defined in terms of the kinds of
grammars that could generate them. Chomsky aimed to develop
a framework for studying natural languages; however, his
hierarchy has proved to be useful in the theory of computation.

The Chomsky hierarchy includes four categories of languages. He
called them types 3, 2, 1, and 0. More modern names are
regular, context-free, context-sensitive, and computably
enumerable.

For each language category, there is an associated category of
grammars that can generate that kind of language. The same
names are used for the grammar categories (for example, a
regular grammar generates a regular language).

2025-01-15 CS 331 Spring 2025 16

2025-01-15 CS 331 Spring 2025

The Chomsky Hierarchy
The Hierarchy [1/2]

Here is the Chomsky hierarchy.

Language Category
Generator Recognizer

Number Name

Type 3 Regular Grammar in which each production
has one of the following forms.

• A → ε

• A → b

• A → bC

Another kind of generator: regular
expressions (covered later).

Deterministic Finite
Automaton

Think: Program that uses a small,
fixed amount of memory.

Type 2 Context-
Free

Grammar in which the left-hand side
of each production consists of a
single nonterminal.

• A → [anything]

Nondeterministic Push-Down
Automaton

Think: Finite Automaton + Stack
(roughly).

Type 1 Context-
Sensitive

Don’t worry about it. Don’t worry about it.

Type 0 Computably
Enumerable

Grammar (no restrictions). Turing Machine
Think: Computer Program

17

The Chomsky Hierarchy
The Hierarchy [2/2]

Each category of languages in the Chomsky hierarchy is contained
in the next. So every regular language is context-free, etc.

Next we look briefly at each category in the Chomsky hierarchy,
how it is defined, and why we care about it.

2025-01-15 CS 331 Spring 2025

Computably

Enumerable Languages

Context-Free Languages

Context-Sensitive Languages

Regular Languages

18

The Chomsky Hierarchy
Why We Care [1/5]

A regular language is one that can be generated by a grammar
in which each production has one of the following forms.

▪ A → ε

▪ A → b

▪ A → bC

Alternative generator: regular expression (covered later).

A regular language can be recognized by a deterministic finite
automaton.

▪ Think: a program using only a small, fixed amount of memory.

Regular languages generally describe lexeme categories.

▪ The set of all legal C++ identifiers forms a regular language.

Thus, these languages encompass the level of computation
required for lexical analysis: breaking a program into lexemes.

Regular languages are also used in text search/replace.

2025-01-15 CS 331 Spring 2025 19

The Chomsky Hierarchy
Why We Care [2/5]

A context-free language is one that can be generated by a
grammar in which the left-hand each production consists of a
single nonterminal.

▪ A → [anything]

A context-free language can be recognized by a nondeterministic
push-down automaton.

▪ Roughly: a finite automaton plus a memory that acts as a stack.

Context-free languages generally describe programming-language
syntactic correctness.

▪ The set of all syntactically correct Lua programs (for example) is a
context-free language.

Thus, these languages encompass the level of computation
required for parsing: determining whether a program is
syntactically correct, and, if so, how it is structured.

2025-01-15 CS 331 Spring 2025 20

The Chomsky Hierarchy
Why We Care [3/5]

As for context-sensitive languages: we generally do not care.

▪ I would call this category a mistake—an idea that Chomsky thought
would be fruitful, but turned out not to be.

▪ I mention this category only for historical interest. You do not need
to know anything about context-sensitive languages.

In case anyone is interested: Context-sensitive grammars—which
generate context-sensitive languages—allow restricting the
expansion of a nonterminal to a particular context. For example,
such a grammar might include the following production.

xAy → xBcy

So A can be expanded to Bc, as long as it lies between x and y.

And the recognizer for a context-sensitive language is called a
linear bounded automaton. Google it, if you wish. Or don’t.

2025-01-15 CS 331 Spring 2025

You may stop reading this slide here.

21

The Chomsky Hierarchy
Why We Care [4/5]

A computably enumerable language is one that can be
described by a grammar. We place no restrictions on the
productions in the grammar.

The recognizer for a computably enumerable language is a Turing
machine—a formalization of a computer program.

We care about computably enumerable languages because they
encompass the things that computer programs can do.

▪ If a language is computably enumerable,
then some computer program is a
recognizer for it.

▪ Otherwise, no such program exists.

Note. This kind of language is also called a recursively
enumerable language. This terminology comes from a branch
of mathematics called recursive function theory.

2025-01-15 CS 331 Spring 2025

Computably enumerable
languages are important,

but we will not discuss them
any further in this class.

22

The Chomsky Hierarchy
Why We Care [5/5]

Summary

▪ A lexeme category (e.g., C++ identifiers) usually forms a regular
language. Recognition of a regular language is thus the level of
computation required for lexical analysis—and text search/replace.

▪ In most programming languages, the set of all syntactically correct
programs forms a context-free language. Recognition of context-
free languages is thus the level of computation required for parsing.

▪ Context-sensitive languages are mostly a historical curiosity.

▪ Recognition of computably enumerable languages encompasses
the tasks that computer programs are capable of. These languages
are important in the theory of computation.

Our next topic is Regular Languages. We will cover ideas to be
used in lexical analysis. We will also look at regular expressions,
which are used, for example, in text search & replace.

After that, we study Context-Free Languages, covering ideas to be
used in parsing.

2025-01-15 CS 331 Spring 2025 23

Regular Languages

2025-01-15 CS 331 Spring 2025 24

Regular Languages
Introduction

Now we look closer at the smallest of the four categories of
languages in the Chomsky hierarchy: the regular languages.

Regular languages have two important applications.

▪ In most programming languages, the set of all lexemes (words,
roughly) of a particular kind forms a regular language. Thus we
make use of regular languages in the early stages of compilation or
interpretation, when we break up a program into lexemes—a
process called lexical analysis, or lexing.

▪ Regular languages are heavily used in text search/replace.

2025-01-15 CS 331 Spring 2025 25

Regular Languages
Regular Grammars & Languages — Definitions

A regular grammar is a grammar, each of whose productions
looks like one of the following.

 A → ε A → b A → bC

That is, the left-hand side of each production is a single
nonterminal, while the right-hand side is one of:

▪ the empty string

▪ a single terminal, or

▪ a single terminal followed by a single nonterminal—which may be
the same as the left-hand side.

A regular language is a language that is generated by some
regular grammar.

2025-01-15 CS 331 Spring 2025 26

Regular Languages
Regular Grammars & Languages — Examples [1/3]

Here is an example of a regular grammar.

S → ε

S → t

S → xB

B → yS

 {ε, xy, xyxy, xyxyxy, …, t, xyt, xyxyt, xyxyxyt, …}

So this language is a regular language.

2025-01-15 CS 331 Spring 2025

Q. What language does this grammar generate?

A. The set of all strings that consist of zero or
more concatenated copies of xy, followed by
an optional t.

27

Regular Languages
Regular Grammars & Languages — Examples [2/3]

Here is another grammar. This is not a regular grammar.

S → A

S → At

A → Axy

A → ε

 {ε, xy, xyxy, xyxyxy, …, t, xyt, xyxyt, xyxyxyt, …}

Q. Is this a regular language?

A. Yes! Because it is generated by a regular grammar: the one on
the previous slide.

2025-01-15 CS 331 Spring 2025

Q. What language does this grammar generate?

A. The set of all strings that consist of zero or
more concatenated copies of xy, followed by
an optional t.

28

Regular Languages
Regular Grammars & Languages — Examples [3/3]

There are languages that are not regular.

For example, this grammar …

S → aSa

S → b

… generates the following language.

 {b, aba, aabaa, aaabaaa, …} = { akbak | k ≥ 0 }

There is no regular grammar that generates this language. It is not
a regular language. (I am not saying this is obvious; but it is
true. Proving that a language is not regular is beyond the scope
of this class.)

2025-01-15 CS 331 Spring 2025 29

Regular Languages
Finite Automata — Basics [1/5]

A state machine is a kind of
theoretical construct. It is always
in some state.

Repeatedly, it looks at its input,
and, depending on what it sees
and what state it is in, it
transitions to a new state—
which may or may not be the
same as the old state.

It may also do other things when
transitioning.

2025-01-15 CS 331 Spring 2025

State Machine

Input

Input

State Machine
stork

State Machine

Input

I’m in state 37.

Transitioning …

37

37

5

Now I’m in state 5.

30

Regular Languages
Finite Automata — Basics [2/5]

A deterministic finite automaton (Latin plural “automata”), or
DFA, is a kind of state machine that forms a recognizer for
regular languages.

A DFA consists of a finite collection of states and transitions
between these states.

▪ One state is the start state.

▪ Some states may be accepting states.

▪ Each transition begins at a state, ends at a state, and is associated
with a character in the alphabet—that is, some terminal symbol.

▪ For each character, each state has
exactly one transition leaving it that
is associated with that character.

Here is a diagram of a 3-state DFA.

On the next slide we make the idea of a DFA
diagram more precise.

2025-01-15 CS 331 Spring 2025

a
bStart

b a

ba

31

Regular Languages
Finite Automata — Basics [3/5]

To make a diagram of a DFA, we draw a circle (or other enclosed
shape) for each state. For each transition, we draw an arrow
from the state it begins at to the state it ends at, labeling the
arrow with the transition’s character.

We make accepting states bold, and we draw an arrow labeled
“Start” to the start state.

2025-01-15 CS 331 Spring 2025

States

An accepting state

Transitions

a
bStart

b a

Shorthand for two
transitions: one
labeled a and one
labeled b.

The start state

Conventions for DFA
diagrams vary a little. If

you have studied automata
before, you might have

seen diagrams that were
slightly different.

a,b

32

Regular Languages
Finite Automata — Basics [4/5]

We use a DFA as a recognizer as follows.

▪ We are always in one of the states, beginning with the start state.

▪ We proceed in steps. At each, we read a character from the input
and follow the transition beginning at the current state and labeled
with the character that was read. Where this ends is our new state.

▪ If, when we reach the end of the input, we are in an accepting
state, then we accept the input; otherwise we do not accept.

The set of all inputs that are accepted is the language recognized
by the DFA.

Q. What language does this DFA
recognize?

A. The set of all strings that consist
of an a followed by zero or more b’s.

 {a, ab, abb, abbb, abbbb, abbbbb, …}

2025-01-15 CS 331 Spring 2025

a
bStart

b a

a,b

33

Regular Languages
Finite Automata — Basics [5/5]

Fact. The languages that are recognized by DFAs are precisely the
regular languages.

That is:

▪ For each DFA, the language it recognizes is a regular language.

▪ For each regular language, there is a DFA that recognizes it.

We will see the state-machine idea in code form later in the
semester when we write code to do lexical analysis.

2025-01-15 CS 331 Spring 2025 34

Regular Languages
Finite Automata — TRY IT (Exercises)

Exercises

1. What language is recognized by the DFA whose diagram is
shown?

2. Draw the diagram of a DFA that recognizes the language
consisting of all strings of 0s and 1s that contain at least one
character.

2025-01-15 CS 331 Spring 2025

xStart

x

y

y

35

Regular Languages
Finite Automata — TRY IT (Answers)

Answers

1. What language is recognized by the DFA whose diagram is
shown?

The language containing all strings of x and y characters that have
an even number of x characters (including the empty string!).

2. Draw the diagram of a DFA that
recognizes the language
consisting of all strings of 0s and
1s that contain at least one character.

2025-01-15 CS 331 Spring 2025

xStart

x

y

y

0,1
Start 0,1

36

	Slide 1: The Chomsky Hierarchy Regular Languages
	Slide 2: Unit Overview Formal Languages & Grammars
	Slide 3
	Slide 4: Review Basic Concepts
	Slide 5: Review Intro. To Formal Lang’s & Grammars — Formal Languages [1/2]
	Slide 6: Review Intro. To Formal Lang’s & Grammars — Formal Languages [2/2]
	Slide 7: Review Intro. To Formal Lang’s & Grammars — Grammars [1/4]
	Slide 8: Review Intro. To Formal Lang’s & Grammars — Grammars [2/4]
	Slide 9: Review Intro. To Formal Lang’s & Grammars — Grammars [3/4]
	Slide 10: Review Intro. To Formal Lang’s & Grammars — Grammars [4/4]
	Slide 11: Review Intro. To Formal Lang’s & Grammars — TRY IT #3 (Exercises)
	Slide 12: Review Intro. To Formal Lang’s & Grammars — TRY IT #3 (Answers)
	Slide 13: Review Intro. To Formal Lang’s & Grammars — TRY IT #4 (Exercises)
	Slide 14: Review Intro. To Formal Lang’s & Grammars — TRY IT #4 (Answers)
	Slide 15
	Slide 16: The Chomsky Hierarchy Introduction
	Slide 17: The Chomsky Hierarchy The Hierarchy [1/2]
	Slide 18: The Chomsky Hierarchy The Hierarchy [2/2]
	Slide 19: The Chomsky Hierarchy Why We Care [1/5]
	Slide 20: The Chomsky Hierarchy Why We Care [2/5]
	Slide 21: The Chomsky Hierarchy Why We Care [3/5]
	Slide 22: The Chomsky Hierarchy Why We Care [4/5]
	Slide 23: The Chomsky Hierarchy Why We Care [5/5]
	Slide 24
	Slide 25: Regular Languages Introduction
	Slide 26: Regular Languages Regular Grammars & Languages — Definitions
	Slide 27: Regular Languages Regular Grammars & Languages — Examples [1/3]
	Slide 28: Regular Languages Regular Grammars & Languages — Examples [2/3]
	Slide 29: Regular Languages Regular Grammars & Languages — Examples [3/3]
	Slide 30: Regular Languages Finite Automata — Basics [1/5]
	Slide 31: Regular Languages Finite Automata — Basics [2/5]
	Slide 32: Regular Languages Finite Automata — Basics [3/5]
	Slide 33: Regular Languages Finite Automata — Basics [4/5]
	Slide 34: Regular Languages Finite Automata — Basics [5/5]
	Slide 35: Regular Languages Finite Automata — TRY IT (Exercises)
	Slide 36: Regular Languages Finite Automata — TRY IT (Answers)

