
Course Overview
Basic Concepts
Introduction to Formal Languages & Grammars

CS 331 Programming Languages

Lecture Slides

Monday, January 13, 2025

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2017–2025 Glenn G. Chappell

Course Overview

2025-01-13 CS 331 Spring 2025 2

2025-01-13 CS 331 Spring 2025

Course Overview
Description

In this class, we study programming languages with a view toward
the following.

▪ How programming languages are specified, and how these
specifications are used.

▪ What different kinds of programming languages are like.

▪ How certain features differ between various programming
languages.

▪ How to write code in various programming languages.

3

2025-01-13 CS 331 Spring 2025

Course Overview
Goals

Upon successful completion of CS 331, students are expected to:

▪ Understand the concepts of syntax and semantics, and how
syntax can be specified.

▪ Understand, and have experience implementing, basic lexical
analysis, parsing, and interpretation.

▪ Understand the various kinds of programming languages and
the primary ways in which they differ.

▪ Understand standard programming language features and
the forms these take in different programming languages.

▪ Be familiar with the impact (local, global, etc.) that choice of
programming language has on programmers and users.

▪ Have a basic programming proficiency in multiple
significantly different programming languages.

4

2025-01-13 CS 331 Spring 2025

Course Overview
You Need

These goals will be achieved, in part, by studying five
programming languages. You will need to obtain access to them.

1. Lua. ZeroBrane Studio is recommended.

2. Haskell. Install any recent distribution that includes GHC.

3. Scheme. Install DrRacket.

4. Prolog. Install SWI-Prolog.

5. ??? (the programming language you do your presentation on).

All of the first four can be downloaded free for all major operating
systems.

In all cases, get the most up-to-date version that you can.

5

2025-01-13 CS 331 Spring 2025

Course Overview
Topics [1/2]

Topics in this class lie on two tracks:

1. Syntax (correct structure) & semantics (meaning) of PLs.

▪ We look at how syntax is specified, and how such a specification
might make its way into a compiler.

▪ We study the processes of lexical analysis, parsing, and execution.

▪ You will write code to do the above.

2. PL features & categories, and specific PLs.

▪ Features: execution, type systems, identifiers, values, etc.

▪ Categories: dynamic languages, functional languages, concatenative
languages, etc.

▪ Specific PLs: Lua, Haskell, Scheme, and Prolog.

PL = Programming Language

6

2025-01-13 CS 331 Spring 2025

Course Overview
Topics [2/2]

The course material will be divided into eight units:

1. Formal Languages & Grammars

2. The Lua Programming Language

▪ PL Feature: Compilation & Interpretation

3. Lexing & Parsing

4. The Haskell Programming Language

▪ PL Feature: Type System

5. The Scheme Programming Language

▪ PL Feature: Identifiers & Values

▪ PL Feature: Reflection

6. Semantics & Interpretation

7. The Prolog Programming Language

▪ PL Feature: Execution Model

8. Student Presentations on Programming Languages

Track 1: Syntax &
Semantics of PLs.

Track 2: PL features &
categories, specific PLs.

7

2025-01-13 CS 331 Spring 2025

Course Overview
What You Will Do [1/2]

Work that you will submit:

▪ 13 online quizzes (due Sundays at 5 pm)

▪ 7 homework assignments

▪ 2 exams (Midterm & Final)

In addition, you will do an in-class presentation on a programming
language near the end of the semester.

Readings will be assigned frequently. You are expected to do each
reading before taking the next quiz.

8

2025-01-13 CS 331 Spring 2025

Course Overview
What You Will Do [2/2]

The assignments will cover the following topics.

1. Formal Languages [math-y problems]

2. Coding in Lua

3. Writing a Lexer

4. Writing a Parser

5. Coding in Haskell

6. Writing an Interpreter

7. Coding in Scheme and Prolog

Assignments 2–7 will involve coding—not Java, C++, or Python.

After finishing Assignments 3, 4, and 6, you will have a complete
interpreter, written in Lua, for a PL that I invent.

Track 1: Syntax &
Semantics of PLs.

Track 2: PL features &
categories, specific PLs.

9

2025-01-13 CS 331 Spring 2025

Unit Overview
Formal Languages & Grammars

Our first unit: Formal Languages & Grammars.

Topics

▪ Basic concepts

▪ Introduction to formal languages & grammars

▪ The Chomsky hierarchy

▪ Regular languages

▪ Regular languages & regular expressions

▪ Context-free languages

▪ Programming language syntax specification

After this we will cover The Lua Programming Language.

10

Basic Concepts

2025-01-13 CS 331 Spring 2025 11

2025-01-13 CS 331 Spring 2025

Basic Concepts
PL Specification

During the next few class meetings, and again after the Midterm,
we will be looking at how programming languages are specified.

Consider. Alice invents a PL
and writes a precise description of it—a specification. Now Bob
and Carol want to write compilers for this PL.

With a properly written specification, Bob will able to write a
compiler without talking to Alice. Carol will be able to write a
compiler without talking to Alice or Bob. The two compilers will
compile the same programs. The executables produced by these
compilers will do the same things.

How does Alice write a specification? How do Bob and Carol use it?

Before we begin answering these questions, we look at some
useful terminology …

I put a term in boldface when I
say what it means.

12

2025-01-13 CS 331 Spring 2025

Basic Concepts
Dynamic & Static

Dynamic refers to things that happen at runtime.

▪ In C++, new does dynamic allocation.

▪ Python has dynamic type checking: a type error is not flagged until
the code containing it is executed.

▪ In Windows, “DLL” stands for “dynamic-link library”. Code in a .dll

file is linked with application code, as necessary, at runtime.

▪ ANSI Forth has dynamic scope: a word is accessible any time after
its definition, until another word with the same name is defined.

Static refers to things that happen before runtime.

▪ In C++, global variables are statically allocated.

▪ Java has static type checking: type errors are flagged by the
compiler. Code containing them cannot be executed.

▪ A C++ program is typically statically linked (mostly).

▪ Haskell has static scope: whether an identifier is accessible at a
particular point in a program is determined by the compiler.

Hint. Take
some time to

make sure you
know these!

13

2025-01-13 CS 331 Spring 2025

Basic Concepts
Syntax & Semantics

Syntax is the correct structure of code.

▪ The string “a + b” is a syntactically correct C++ expression.

▪ The string “a b +” is not a syntactically correct C++ expression
(but it is a syntactically correct Forth expression).

Semantics is the meaning of code.

▪ In C++, the semantics of “a + b” is roughly as follows: function
operator+ is called, with a and b passed as its arguments. The
return value of this function becomes the value of the expression.

There is a gray area between syntax and semantics.

▪ In C++, “3+string("abc")” will probably cause a type error. Is this
a problem with syntax or semantics?

▪ The standard answer: we classify such issues under static
semantics. The above “a + b” example, which concerned what
happens when code executes, involved dynamic semantics.

Syntactically: adverb
form of the word “syntax”.

Expression:
something that
has a value.

14

2025-01-13 CS 331 Spring 2025

Basic Concepts
Where We Are Headed

Next we look at how syntax is specified. People write compilers
based only on the written specification of a programming
language. So syntax must be specified very precisely.

In a few weeks, we will discuss how syntax specifications are used.
Over two homework assignments, you will write code to do
parsing: determining whether code is syntactically correct, and,
if so, what its structure is.

Later in the semester, we will look—much more briefly—at the
specification of semantics.

15

Introduction to Formal Languages &
Grammars

2025-01-13 CS 331 Spring 2025 16

2025-01-13 CS 331 Spring 2025

Introduction to Formal Languages & Grammars
Formal Languages [1/4]

A string is a finite sequence of zero or
more characters. A formal language
(or just language) is a set of strings.

The characters in these strings lie in
some alphabet. We talk about a language over an alphabet.

When we study formal languages as abstract objects, we often
write strings without quote marks. We denote the empty string
with a lower-case Greek epsilon (ε).

 "abc" becomes abc

 "" becomes ε

Epsilon (ε) is not part of the alphabet. It is just a way to write "".

A formal language is not the same
as a programming language. This
unfortunate terminology is, alas,

very standard.

Or “collection” if you prefer.

17

2025-01-13 CS 331 Spring 2025

Introduction to Formal Languages & Grammars
Formal Languages [2/4]

Here are some examples of (formal) languages.

▪ {abc, xyz, q}

▪ {ε, 01, 0101, 010101, 01010101, …}

▪ The above set is a language over the alphabet {0, 1}.

▪ The set of all legal C++ identifiers.

▪ That is, all strings that contain only letters, digits, and underscores

(“_”), begin with a letter or underscore, and are not one of the C++
reserved words (for, class, if, const, private, virtual, delete,

friend, throw, static_cast, etc.).

▪ The collection of all syntactically correct Lua programs.

▪ We do not normally think of a whole program as a string. But it is.

The last two examples above illustrate why we are talking about
formal languages in a class on programming languages.

18

2025-01-13 CS 331 Spring 2025

Introduction to Formal Languages & Grammars
Formal Languages [3/4]

How do we describe a formal language in a precise way?

There are two broad categories of ways to describe formal
languages: generators and recognizers.

A generator is something that can produce the strings in a
language—all of them, and nothing else.

A recognizer is a way of determining if a given string lies in the
language. Given a string in the language, a recognizer says,
“yes”; given a string that is not in the language, it does not.

19

2025-01-13 CS 331 Spring 2025

Introduction to Formal Languages & Grammars
Formal Languages [4/4]

An important question, when we are dealing with a formal
language: Given a string, does it lie in the language? (Every
compiler must be able to answer this question—right?)

To answer this question, we need a recognizer.

But it is usually easier to construct a generator.

A common technique: Write a generator, and then have a program
use it to produce a recognizer automatically.

Programs like Yacc, Bison, and ANTLR input a kind of generator
called a grammar, and output code (in C, perhaps) for a
recognizer.

Over the next few days, we will
have a lot more to say about
generators and recognizers.

20

Introduction to Formal Languages & Grammars
Grammars — Definitions [1/2]

A phrase-structure grammar (usually just grammar) is one
kind of language generator.

To write a grammar, we need a collection of terminal symbols.
This is our alphabet.

We also need a collection of nonterminal symbols. These are like
variables that eventually turn into something else. One
nonterminal symbol is the start symbol.

For now, lower-case letters are terminal symbols, upper-case
letters are nonterminal symbols, and “S” is the start symbol.

Some terminal symbols: a b x

Some nonterminal symbols: A Q S

2025-01-13 CS 331 Spring 2025

Start symbol

21

Introduction to Formal Languages & Grammars
Grammars — Definitions [2/2]

A grammar is a list of one or more productions. A production is a
rule for altering strings by substituting one substring for
another. The strings are made of terminal and nonterminal
symbols.

Here is a grammar with four productions.

S → AB

A → c

B → Bd

B → ε

2025-01-13 CS 331 Spring 2025

Epsilon (ε) is neither terminal nor nonterminal.
It is not a symbol at all. Rather, it represents a
string containing no symbols.

You might read the right
arrow as “becomes”,

“goes to”, “turns into”, or
“is replaced by”.

22

Introduction to Formal Languages & Grammars
Grammars — Derivations [1/4]

1. S → AB

2. A → c

3. B → Bd

4. B → ε

Here is what we do with a grammar.

▪ Begin with the start symbol.

▪ Repeatedly apply productions. To apply a production,
replace the left-hand side of the production (which
must be a contiguous collection of symbols in the
current string) with the right-hand side.

▪ We can stop only when there are no more nonterminals.

The resulting list of strings is a derivation of the final
string.

▪ To the right is a derivation of cdd based on the above grammar.

2025-01-13 CS 331 Spring 2025

The same grammar.
Productions are numbered, to
make it easy to refer to them.

S

AB

ABd

ABdd

Add

cdd

23

Introduction to Formal Languages & Grammars
Grammars — Derivations [2/4]

Below are the same grammar and derivation. I have annotated the
derivation to show what is happening.

▪ The number indicates which production is being used.

▪ The underlined symbols show the substring being replaced. This is
the left-hand side of the production being used.

Grammar

1. S → AB

2. A → c

3. B → Bd

4. B → ε

Note the use of production 4. No “ε”

appears in the derivation.

2025-01-13 CS 331 Spring 2025

Derivation of cdd

 S

 AB

 ABd

 ABdd

 Add

 cdd

1

3

3

4

2

24

Introduction to Formal Languages & Grammars
Grammars — Derivations [3/4]

Grammar

1. S → AB

2. A → c

3. B → Bd

4. B → ε

Recall: a grammar is a kind of generator.

The language generated by a grammar
consists of all strings for which there is a derivation.

So “cdd” lies in the language generated by the above grammar.

Q. What language does the above grammar generate?

A. All strings consisting of a single c followed by zero or more d’s.

 {c, cd, cdd, cddd, cdddd, cddddd, …}

2025-01-13 CS 331 Spring 2025

Derivation of cdd

 S

 AB

 ABd

 ABdd

 Add

 cdd

1

3

3

4

2

25

Introduction to Formal Languages & Grammars
Grammars — Derivations [4/4]

Here is another example, involving a different grammar.

Grammar

1. S → xSy

2. S → ε

Q. What language does this grammar
generate?

A. All strings consisting of zero or more
x’s followed by the same number of y’s.

 {ε, xy, xxyy, xxxyyy, xxxxyyyy, …}

Here is another way to describe this language: { xkyk | k ≥ 0 }.

2025-01-13 CS 331 Spring 2025

Derivation of xxxyyy

 S

 xSy

 xxSyy

 xxxSyyy

 xxxyyy

1

1

1

2

Avoid saying
“any number of …”.
Say “zero or more”
or “one or more”.

26

Introduction to Formal Languages & Grammars
Grammars — Applications [1/2]

As the name suggests, phrase-structure grammars were first used
in linguistics. They were proposed as a tool for specifying the
grammar of a natural language (examples of natural languages:
English, French, Arabic).

The start symbol could represent a sentence.

Various other nonterminals might represent things like subject,
predicate, or prepositional phrase.

The terminal symbols would be the words of the natural language.

2025-01-13 CS 331 Spring 2025 27

Introduction to Formal Languages & Grammars
Grammars — Applications [2/2]

In computing, an important application of phrase-structure
grammars is specifying PL syntax.

▪ The language generated is the set of syntactically correct programs.

▪ The start symbol represents a program.

▪ Other nonterminals might represent things
like statement, for-loop, or class definition.

▪ Terminal symbols are typically the
lexemes—words, roughly—of the programming language.

We discuss lexemes in more detail later in the semester. For now,
here are some examples of lexemes in C++.

▪ Keywords: for class const return

▪ Identifiers: mergeSort17 ARRAY_SIZE x

▪ Literals: "Hello" -42 3.47e-12f

▪ Operators: += << ! ::

▪ Punctuation: { } ;

2025-01-13 CS 331 Spring 2025

Since the late 1970s,
virtually every PL has

had its syntax specified
using a grammar.

28

Introduction to Formal Languages & Grammars
TRY IT #1 (Exercises)

Grammar A

1. S → Sa

2. S → xS

3. S → x

Exercises

1. Based on Grammar A, write a derivation for xxxa.

2. Is there a derivation based on Grammar A for the string aaa?

3. What language does Grammar A generate?

2025-01-13 CS 331 Spring 2025 29

Introduction to Formal Languages & Grammars
TRY IT #1 (Answers)

Grammar A

1. S → Sa

2. S → xS

3. S → x

Answers

1. Based on Grammar A, write a derivation for xxxa.

See above, on the right.

2. Is there a derivation based on Grammar A for the string aaa?

No, every string in the language generated begins with x.

3. What language does Grammar A generate?

The language generated is the set of all strings consisting of one or
more x’s followed by zero or more a’s.

2025-01-13 CS 331 Spring 2025

Derivation of xxxa

 S

 Sa

 xSa

 xxSa

 xxxa

1

2

2

3

30

Introduction to Formal Languages & Grammars
TRY IT #1 (Note)

Grammar A

1. S → Sa

2. S → xS

3. S → x

There is more than one derivation of the string xxxa based on
Grammar A. This is typical. It is not a problem.

2025-01-13 CS 331 Spring 2025

Derivation #2

 S

 xS

 xSa

 xxSa

 xxxa

2

1

2

3

Derivation #1

 S

 Sa

 xSa

 xxSa

 xxxa

1

2

2

3

Derivation #3

 S

 xS

 xxS

 xxSa

 xxxa

2

2

1

3

31

Introduction to Formal Languages & Grammars
TRY IT #2 (Exercises)

Grammar B

S → XY

X → a

X → b

Y → t

Y → u

Exercises

4. What language does Grammar B generate?

5. What language does Grammar C generate?
Hint. This is almost-but-not-quite a trick question.

2025-01-13 CS 331 Spring 2025

Grammar C

S → A

A → xA

A → AA

32

Introduction to Formal Languages & Grammars
TRY IT #2 (Answers)

Grammar B

S → XY

X → a

X → b

Y → t

Y → u

Answers

4. What language does Grammar B generate?

The language generated is {at, au, bt, bu}.

5. What language does Grammar C generate?
Hint. This is almost-but-not-quite a trick question.

The language generated contains no strings: {}.

2025-01-13 CS 331 Spring 2025

Grammar C

S → A

A → xA

A → AA

The language containing no strings is not the same
as the language containing only the empty string!

33

	Slide 1: Course Overview Basic Concepts Introduction to Formal Languages & Grammars
	Slide 2
	Slide 3: Course Overview Description
	Slide 4: Course Overview Goals
	Slide 5: Course Overview You Need
	Slide 6: Course Overview Topics [1/2]
	Slide 7: Course Overview Topics [2/2]
	Slide 8: Course Overview What You Will Do [1/2]
	Slide 9: Course Overview What You Will Do [2/2]
	Slide 10: Unit Overview Formal Languages & Grammars
	Slide 11
	Slide 12: Basic Concepts PL Specification
	Slide 13: Basic Concepts Dynamic & Static
	Slide 14: Basic Concepts Syntax & Semantics
	Slide 15: Basic Concepts Where We Are Headed
	Slide 16
	Slide 17: Introduction to Formal Languages & Grammars Formal Languages [1/4]
	Slide 18: Introduction to Formal Languages & Grammars Formal Languages [2/4]
	Slide 19: Introduction to Formal Languages & Grammars Formal Languages [3/4]
	Slide 20: Introduction to Formal Languages & Grammars Formal Languages [4/4]
	Slide 21: Introduction to Formal Languages & Grammars Grammars — Definitions [1/2]
	Slide 22: Introduction to Formal Languages & Grammars Grammars — Definitions [2/2]
	Slide 23: Introduction to Formal Languages & Grammars Grammars — Derivations [1/4]
	Slide 24: Introduction to Formal Languages & Grammars Grammars — Derivations [2/4]
	Slide 25: Introduction to Formal Languages & Grammars Grammars — Derivations [3/4]
	Slide 26: Introduction to Formal Languages & Grammars Grammars — Derivations [4/4]
	Slide 27: Introduction to Formal Languages & Grammars Grammars — Applications [1/2]
	Slide 28: Introduction to Formal Languages & Grammars Grammars — Applications [2/2]
	Slide 29: Introduction to Formal Languages & Grammars TRY IT #1 (Exercises)
	Slide 30: Introduction to Formal Languages & Grammars TRY IT #1 (Answers)
	Slide 31: Introduction to Formal Languages & Grammars TRY IT #1 (Note)
	Slide 32: Introduction to Formal Languages & Grammars TRY IT #2 (Exercises)
	Slide 33: Introduction to Formal Languages & Grammars TRY IT #2 (Answers)

