CS 411 Analysis of Algorithms, Fall 2025 In-Class Worksheet 1: The Master Theorem—Solutions

Worksheet distributed in class on Monday, September 29.

1. Algorithm A is given a list as input. It uses a Divide and Conquer strategy. It splits its input in half (or nearly so), and handles each part with a recursive call. It also does other work requiring constant time.

Use the Master Theorem to determine the order of Algorithm A. As a guide through this process, answer each of the following.

Get b & a from the above description: 2 nearly equal-sized parts, 2 recursive calls.

$$b = 2$$
; $a = 2$.

f(n) is the amount of other work. This is constant time: $\Theta(1)$, that is, $\Theta(n^0)$.

$$f(n)$$
 is $\Theta(n^d)$. $d = \underline{0}$.

$$a = 2$$
. $b^d = 2^0 = 1$. So $a > b^d$.

Compare a and b^d . Circle one comparison operator: $a < b > b^d$.

"<" gives case 1, "=" gives case 2, and ">" gives case 3.

Which case of the Master Theorem? Circle one: 1 2 3

Case 3 of the Master Theorem says $\Theta(n^k)$, where $k = \log_b a$. So $\Theta(n^1)$, that is, $\Theta(n)$: linear time.

Conclusion. The order of Algorithm *A* is (simplify!): $\underline{\Theta}(n)$, or linear time.