
Other Graph Topics
Course Wrap-Up

CS 311 Data Structures and Algorithms

Lecture Slides

Friday, December 6, 2024

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2005–2024 Glenn G. Chappell

Some material contributed by Chris Hartman

2024-12-06 CS 311 Fall 2024

The Rest of the Course
Overview

Final Topics

▪ External Data

▪ Previously, we dealt only with data stored in memory.

▪ Suppose, instead, that we wish to deal with data stored on an external
device, accessed via a relatively slow connection and available in chunks

(data on a disk, for example).

▪ How does this affect the design of algorithms and data structures?

▪ Graph Algorithms

▪ A graph models relationships between pairs
of objects.

▪ This is a very general notion. Algorithms for

graphs often have very general applicability.

Drawing of

a Graph

This usage of “graph” has
nothing to do with the graph
of a function. It is a different

definition of the word.

(part)

2

Module Overview
Graph Algorithms

Topics

▪ Introduction to Graphs

▪ Graph Traversals

▪ Spanning Trees

▪ Other Graph Topics

2024-12-06 CS 311 Fall 2024

3

Review

2024-12-06 CS 311 Fall 2024 4

2024-12-06 CS 311 Fall 2024

Review
Introduction to Graphs [1/3]

A graph consists of vertices and edges.

▪ An edge joins two vertices: its endpoints.

▪ 1 vertex, 2 vertices (Latin plural).

▪ Two vertices joined by an edge are
adjacent; each is a neighbor of the other.

In a weighted graph, each edge has a
weight (or cost).

▪ The weight is the resource expenditure
required to use that edge.

▪ We typically choose edges to minimize the
total weight of some kind of collection.

Vertex

Edge

Weight
(cost)

Graph

Weighted

Graph

2

61

2

5

2024-12-06 CS 311 Fall 2024

Review
Introduction to Graphs [2/3]

Two common ways to represent graphs.

Adjacency matrix. 2-D array of 0/1 values.

▪ “Are vertices i, j adjacent?” in Θ(1) time.

▪ Finding all neighbors of a vertex is slow for
large, sparse graphs.

Adjacency lists. List of lists (arrays?).
List i holds neighbors of vertex i.

▪ “Are vertices i, j adjacent?” in Θ(log N) time
if lists are sorted arrays; Θ(N) if not.

▪ Finding all neighbors can be faster.

0

1 2

3

Graph

0 1 2 3

0 1 0 10

1 0 0 01

0 0 0 02

1 0 0 03

Adjacency

Matrix

0: 1, 3

1: 0
2:

3: 0

Adjacency

Lists

N: the number
of vertices.

Vertex
label

6

2024-12-06 CS 311 Fall 2024

Review
Introduction to Graphs [3/3]

When we analyze the efficiency of graph algorithms, we consider
both the number of vertices and the number of edges.

▪ N = number of vertices

▪ M = number of edges

When analyzing efficiency, we consider adjacency matrices &
adjacency lists separately.

The total size of the input is:

▪ For an adjacency matrix: N2. So Θ(N2).

▪ For adjacency lists: N + 2M. So Θ(N + M).

Some particular algorithm might have order (say) Θ(N + M log N).

7

2024-12-06 CS 311 Fall 2024

Review
Spanning Trees — Introduction

A tree is a graph that:

▪ Is connected (all one piece).

▪ Has no cycles.

A spanning tree in a graph G is a tree that:

▪ Includes only vertices and edges of G.

▪ Includes all vertices of G.

Fact. Every connected graph has a spanning tree.

An important problem: given a weighted graph, find a minimum
spanning tree—a spanning tree of minimum total weight.

There are several nice algorithms that solve this problem.

1

2

8

3
4

2

7
6

1

5

6

5

Disconnected

Graph

Connected

Graph

Here, “tree”
does not mean
“rooted tree”.

8

2024-12-06 CS 311 Fall 2024

Review
Spanning Trees — Greedy Algorithms

A greedy algorithm is “shortsighted”. It proceeds in a series of
choices, each based on what is known at the time. Choices are:

▪ Feasible. Each makes sense.

▪ Locally optimal. Best possible based on current information.

▪ Irrevocable. Once a choice is made, it is permanent. A greedy
algorithm never backtracks.

Being greedy is usually not a good way to get correct answers.

However, in the cases when being greedy gives correct results, it
tends to be very fast.

9

2024-12-06 CS 311 Fall 2024

Review
Spanning Trees — Prim’s Algorithm [1/3]

Prim’s Algorithm is a greedy algorithm to find a minimum
spanning tree in a connected weighted graph.

Idea

▪ One vertex is specified as start.

▪ As the algorithm proceeds, we add edges to a tree. Using these
edges, we are able to reach more and more vertices from start.

▪ Procedure. Repeatedly add the lowest-weight edge from a reachable
vertex to a non-reachable vertex, until all vertices are reachable.

It is not obvious that
Prim’s Algorithm
correctly finds a

minimum spanning
tree. But it does!

1

2

8

3
4

2

7
6

1

5

6

5

10

2024-12-06 CS 311 Fall 2024

Review
Spanning Trees — Prim’s Algorithm [2/3]

Finding the lowest-weight edge from reachable to not-reachable:

▪ Use a Priority Queue holding edges, ordered by weight and
implemented as a Minheap. So getFront & delete the edge of least
weight.

▪ Insert edges that join reachable & not-reachable vertices: when
marking a vertex as reachable, insert into the PQ all edges from this
vertex to not-reachable neighbors.

▪ When getting an edge from the PQ, check to be sure it still joins
reachable & not-reachable vertices. If not, skip it.

Represent a weighted graph as usual + matrix of edge weights.

Our Prim’s Algorithm implementation uses std::priority_queue
to find the lowest-weight edge.

See prim.cpp.

11

2024-12-06 CS 311 Fall 2024

Review
Spanning Trees — Prim’s Algorithm [3/3]

How efficient is our implementation of Prim’s Algorithm?

▪ It does something with each vertex.

▪ It does something with each edge, which may involve insertion &
deletion in a Priority Queue—implemented using a Binary Heap.

▪ We do a lot of these, so we can ignore the “amortized” in the time
required for the Priority Queue insertion.

Result: Θ(N + M log M).

For a connected graph, we have M ≥ N – 1. So: Θ(M log M).

Prim’s Algorithm can be written in an even
faster form.

▪ Put vertices in the Priority Queue, and allow
for increase-key (decrease-key in a Minheap):
updating a vertex priority as the algorithm proceeds.

▪ Implement the Priority Queue using a Fibonacci Heap.

Result: Θ(M + N log N).

40

2

16

4

9 27

14 711

Fibonacci Heap

12

2024-12-06 CS 311 Fall 2024

Review
Spanning Trees — Kruskal’s Algorithm

Another greedy algorithm to find a minimum spanning tree:
Kruskal’s Algorithm [J. Kruskal 1956].

Procedure

▪ Set edge set of tree to empty.

▪ Repeat:

▪ Add the least-weight edge joining two vertices that cannot be reached
from each other using edges added so far.

▪ Return edge set of tree.

To implement Kruskal’s Algorithm well, we need an efficient way to
check whether a vertex can be reached from another vertex.

We cover a solution to this problem soon!

Same spanning
tree as Prim’s
Algorithm, but

constructed in a
different order.

1

2

8

3
4

2

7
6

1

5

6

5

13

Other Graph Topics

2024-12-06 CS 311 Fall 2024 14

Other Graph Topics
Shortest Path [1/3]

Shortest Path Problem. Given a weighted graph with two
vertices specified, find the shortest path from one to the other
(the path with the lowest total weight).

2024-12-06 CS 311 Fall 2024

6

7

5

3
2

2

5
4

1

7

1

2 7 + 1 + 2 + 2 = 12

15

Other Graph Topics
Shortest Path [2/3]

Dijkstra’s Algorithm [E. Dijkstra 1959]. Given a start vertex, this
algorithm finds, for each vertex in the weighted graph, the
shortest path from start to that vertex.

Procedure:

▪ Label each vertex. Start gets 0. Others get ∞.

▪ Mark all vertices as unvisited.

▪ Repeat while there are unvisited vertices:

▪ Find the unvisited vertex with the smallest

label. Call it x.

▪ Mark x as visited.

▪ For each unvisited neighbor of x:

▪ Let newLabel = (label of x) + (weight of edge from x to neighbor).

▪ If newLabel < (label of neighbor), then set (label of neighbor) = newLabel.

▪ Done. Meaning of each vertex label when done: length of shortest
path from start to this vertex, or ∞ if there is no path.

2024-12-06 CS 311 Fall 2024

6

7

5

3
2

2

5
4

1

7

1

2

6

7

10

8

120

10

Vertex label = length of shortest path from
start to this vertex that has been found so far.

16

Other Graph Topics
Shortest Path [3/3]

Efficiency issues for Dijkstra’s Algorithm are
similar to those for Prim’s Algorithm.

We put vertices in a Minheap and allow for
decrease-key.

Then, for a connected graph, using a Binary Heap
gives Θ(M log N), while a Fibonacci Heap gives Θ(M + N log N),
just as for Prim’s Algorithm.

2024-12-06 CS 311 Fall 2024

6

7

5

3
2

2

5
4

1

7

1

2

6

7

10

8

120

10

17

2024-12-06 CS 311 Fall 2024

Other Graph Topics
Union-Find [1/7]

Some graph operations do not require a fully general graph
representation.

An example of this is given by the operations in ADT called Union-
Find (a.k.a. Find-Merge).

Data

▪ A graph.

Operations

▪ MakeSet. Create a new vertex.

▪ Union. Given two vertices, add
an edge between them.

▪ Find. Given a vertex, determine
which component (connected chunk) of the graph it lies in.

Using MakeSet and Union, we can construct any graph.

Using Find, we can determine whether there is a path joining
two vertices: this is true if they lie in the same component.

The names of these
operations should make
more sense shortly.

A graph

A component
of the graph

Another
component

A third
component

18

2024-12-06 CS 311 Fall 2024

Other Graph Topics
Union-Find [2/7]

Union-Find operations:

▪ MakeSet. Create a new vertex.

▪ Union. Given two vertices, add an
edge between them.

▪ Find. Given a vertex, determine
which component of the graph it
lies in.

But Union-Find is not really about
graphs …

2

5

6 MakeSet
operations
(1 .. 6)1

4

3

6

Union(2,5)

Union(2,4)

1

4

2

5

3

6

1

4

3

6

2

5

3

6

1

4

2

5

Union(1,4)

19

2024-12-06 CS 311 Fall 2024

Other Graph Topics
Union-Find [3/7]

Union-Find is not really about graphs;
it is about blobs*.

▪ Each vertex lies in some blob.

▪ MakeSet creates a new single-
vertex blob.

▪ Union merges the blobs containing
two given vertices into one blob.

▪ Find determines which blob a given
vertex lies in.

Since we only care about blobs, we do
not need to keep track of edges.

We must keep track of something—but
what? We answer this shortly.

*Blobs are actually called sets.
Thus the names of the operations.

Union(2,5)

Union(2,4)

2

5

1

4

1

4

3

6

5

3

6

1

4

2

5

2

3

6

3

6

1

4

2

5

6 MakeSet
operations
(1 .. 6)

Union(1,4)

20

2024-12-06 CS 311 Fall 2024

Other Graph Topics
Union-Find [4/7]

Union-Find operations usually do not use a graph representation.

Rather, the are done on some kind of disjoint-set structure
(also called a union-find structure or find-merge structure.).

A commonly used—and very efficient—example is a Disjoint-Set
Forest [B. Galler & M. Fischer 1964].

▪ Node-based. Each node represents one vertex.

▪ A set (blob) forms a rooted tree.

▪ Each node has a pointer. This points to its
parent, or to itself if it is the root of a tree.

Doing the Union-Find Operations

▪ MakeSet. Create a new node, pointing at itself.

▪ Find. Start at the given vertex, and follow the pointer chain to the
root. Return identifier for this root—perhaps its index in an array?

▪ So the root—or its index—serves as the identifier for a set.

▪ Union. Do a Find on each of the two given vertices. Point one root
at the other, forming a single tree.

21

2024-12-06 CS 311 Fall 2024

Other Graph Topics
Union-Find [5/7]

Two optimizations greatly speed up Union-
Find operations on a Disjoint-Set Forest.

Union by Rank. When doing a Union, if
the two trees have different heights,
then attach the tree with smaller
height to the root of the other tree.

▪ To make this efficient, track the
height of each tree in its root.
(This is easy to do.)

Path Compression. After following a
pointer chain—which happens during
a Find—point each node in the chain
at the root.

Eventually

22

2024-12-06 CS 311 Fall 2024

Other Graph Topics
Union-Find [6/7]

MakeSet. Create node
pointing at itself.

Union. 2 Finds. Point
root of small-height
tree at other root.

Find. Follow pointer
chain to the root.
Point each vertex in
chain at the root.
Return the root.

1 2 3 4

4

21 3

Eventually

Union(2,5)

Union(2,4)

5 6

5 6

4

1 3 6

5

2

1

24

3

5

61

24

3

5

6

Logical StructureImplementation

5 6

2

5

1

4

1

4

3

6

2 3

1

4

3

6

2

5

3

6

1

4

2

5

6 MakeSet
operations
(1 .. 6)

Union(1,4)

23

2024-12-06 CS 311 Fall 2024

Other Graph Topics
Union-Find [7/7]

Amortized time per operation for a Disjoint-Set Forest, with the
two optimizations discussed, is known to be O(α(n)), where α(n)
is the extremely slow-growing inverse Ackermann function.

▪ A web search finds info about this easily.

Thus, about as near to amortized constant time as one can get,
without actually being amortized constant time.

Implementations of Kruskal’s Algorithm typically use a Disjoint-Set
Forest.

Lastly, a Disjoint-Set Forest is easy to implement well.

24

Module Overview
Graph Algorithms

Topics

▪ Introduction to Graphs

▪ Graph Traversals

▪ Spanning Trees

▪ Other Graph Topics

2024-12-06 CS 311 Fall 2024

25

2024-12-06 CS 311 Fall 2024

The Rest of the Course
Overview

Two Final Topics

▪ External Data

▪ Previously, we dealt only with data stored in memory.

▪ Suppose, instead, that we wish to deal with data stored on an external
device, accessed via a relatively slow connection and available in chunks

(data on a disk, for example).

▪ How does this affect the design of algorithms and data structures?

▪ Graph Algorithms

▪ A graph models relationships between pairs
of objects.

▪ This is a very general notion. Algorithms for

graphs often have very general applicability.

Drawing of

a Graph

This usage of “graph” has
nothing to do with the graph
of a function. It is a different

definition of the word.

26

Course Wrap-Up

2024-12-06 CS 311 Fall 2024 27

2024-12-06 CS 311 Fall 2024

Course Wrap-Up
From the First Day of Class: Course Overview — Goals

Upon successful completion of CS 311, you should:

▪ Have experience writing and documenting high-quality code.

▪ Understand proper error handling, enabling software
components to support robust, reliable applications.

▪ Be able to perform basic analyses of algorithmic efficiency,
including use of big-O and related notation.

▪ Be familiar with various standard algorithms, including those
for searching and sorting.

▪ Understand what data abstraction is, and how it relates to
software design.

▪ Be familiar with standard container data structures,
including implementations and relevant trade-offs.

28

2024-12-06 CS 311 Fall 2024

Course Wrap-Up
From the First Day of Class: Course Overview — Topics

The following topics will be covered, roughly in order:

▪ Advanced C++

▪ Software Engineering Concepts

▪ Recursion

▪ Searching

▪ Algorithmic Efficiency

▪ Sorting

▪ Data Abstraction

▪ Basic Abstract Data Types & Data Structures:

▪ Smart Arrays & Strings

▪ Linked Lists

▪ Stacks & Queues

▪ Trees (various kinds)

▪ Priority Queues

▪ Tables

▪ Briefly: external data, graph algorithms.

Goal: Practical generic containers

A container is a data structure holding
multiple items, usually all the same type.

A generic container is one that can hold
objects of client-specified type.

29

Course Wrap-Up
Things That Matter [1/3]

Scalability matters!

The big winners in the modern world are those who design and
produce scalable systems.

Remember, we generally look for:

▪ Constant or logarithmic time for single-item operations.

▪ Linear or log-linear time (or faster) for whole-dataset operations.

Q. Are we talking about worst-case behavior? Is average-case
acceptable, with worst-case being slower? What about
amortized time?

A. It depends on the requirements of the project.

We measure time by counting basic operations.

These operations may vary. It matters what we count!

2024-12-06 CS 311 Fall 2024 30

Course Wrap-Up
Things That Matter [2/3]

Trade-offs matter!

Q. Why not just give everyone a quick-reference sheet listing the
best solutions to various problems?

A. Because many problems have no single best overall solution.

Understand trade-offs; find solutions that meet your needs.

Some examples from this semester:

▪ Finding: Sequential Search vs. Binary Search.

▪ Sequences: Array vs. Linked List vs. Sequence in a Table, etc.

▪ Finding again: Binary Search on sorted array vs. Table.

▪ Tables: Red-Black Tree vs. Hash Table vs. Prefix Tree vs. other.

▪ And then there is the effect of slow connections (external methods).

▪ Taking time (& money!) to optimize vs. slow code.

▪ Using already written data structure/algorithm vs. writing our own.

2024-12-06 CS 311 Fall 2024 31

Course Wrap-Up
Things That Matter [3/3]

Error handling, robustness, and reliability matter!

Software systems manage sensitive personal data, financial
transactions, military equipment, and medical devices. They
drive cars, planes, trains, and ships. They run security systems.

The days when we could get away with saying, “Aw, that hardly
ever happens; don’t worry about it,” are largely gone.

▪ Responsibilities like those above require very low failure rates.

▪ The increasing size of systems can make “rare” events common.

▪ Thanks to the Web, malicious users are an important concern.

But some projects can get away with ignoring some of these ideas.

Understand the needs of the project you are working on!

2024-12-06 CS 311 Fall 2024 32

Course Wrap-Up
THE END

2024-12-06 CS 311 Fall 2024

Is that it? Yup.

33

	Slide 1: Other Graph Topics Course Wrap-Up
	Slide 2: The Rest of the Course Overview
	Slide 3: Module Overview Graph Algorithms
	Slide 4
	Slide 5: Review Introduction to Graphs [1/3]
	Slide 6: Review Introduction to Graphs [2/3]
	Slide 7: Review Introduction to Graphs [3/3]
	Slide 8: Review Spanning Trees — Introduction
	Slide 9: Review Spanning Trees — Greedy Algorithms
	Slide 10: Review Spanning Trees — Prim’s Algorithm [1/3]
	Slide 11: Review Spanning Trees — Prim’s Algorithm [2/3]
	Slide 12: Review Spanning Trees — Prim’s Algorithm [3/3]
	Slide 13: Review Spanning Trees — Kruskal’s Algorithm
	Slide 14
	Slide 15: Other Graph Topics Shortest Path [1/3]
	Slide 16: Other Graph Topics Shortest Path [2/3]
	Slide 17: Other Graph Topics Shortest Path [3/3]
	Slide 18: Other Graph Topics Union-Find [1/7]
	Slide 19: Other Graph Topics Union-Find [2/7]
	Slide 20: Other Graph Topics Union-Find [3/7]
	Slide 21: Other Graph Topics Union-Find [4/7]
	Slide 22: Other Graph Topics Union-Find [5/7]
	Slide 23: Other Graph Topics Union-Find [6/7]
	Slide 24: Other Graph Topics Union-Find [7/7]
	Slide 25: Module Overview Graph Algorithms
	Slide 26: The Rest of the Course Overview
	Slide 27
	Slide 28: Course Wrap-Up From the First Day of Class: Course Overview — Goals
	Slide 29: Course Wrap-Up From the First Day of Class: Course Overview — Topics
	Slide 30: Course Wrap-Up Things That Matter [1/3]
	Slide 31: Course Wrap-Up Things That Matter [2/3]
	Slide 32: Course Wrap-Up Things That Matter [3/3]
	Slide 33: Course Wrap-Up THE END

