
Spanning Trees

CS 311 Data Structures and Algorithms

Lecture Slides

Wednesday, December 4, 2024

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2005–2024 Glenn G. Chappell

Some material contributed by Chris Hartman

2024-12-04 CS 311 Fall 2024

The Rest of the Course
Overview

Final Topics

▪ External Data

▪ Previously, we dealt only with data stored in memory.

▪ Suppose, instead, that we wish to deal with data stored on an external
device, accessed via a relatively slow connection and available in chunks

(data on a disk, for example).

▪ How does this affect the design of algorithms and data structures?

▪ Graph Algorithms

▪ A graph models relationships between pairs
of objects.

▪ This is a very general notion. Algorithms for

graphs often have very general applicability.

Drawing of

a Graph

This usage of “graph” has
nothing to do with the graph
of a function. It is a different

definition of the word.

(part)

2

Module Overview
Graph Algorithms

Topics

▪ Introduction to Graphs

▪ Graph Traversals

▪ Spanning Trees

▪ Other Graph Topics

2024-12-04 CS 311 Fall 2024

3

Review

2024-12-04 CS 311 Fall 2024 4

2024-12-04 CS 311 Fall 2024

Review
Introduction to Graphs [1/3]

A graph consists of vertices and edges.

▪ An edge joins two vertices: its endpoints.

▪ 1 vertex, 2 vertices (Latin plural).

▪ Two vertices joined by an edge are
adjacent; each is a neighbor of the other.

In a weighted graph, each edge has a
weight (or cost).

▪ The weight is the resource expenditure
required to use that edge.

▪ We typically choose edges to minimize the
total weight of some kind of collection.

Vertex

Edge

Weight
(cost)

Graph

Weighted

Graph

2

61

2

5

2024-12-04 CS 311 Fall 2024

Review
Introduction to Graphs [2/3]

Two common ways to represent graphs.

Adjacency matrix. 2-D array of 0/1 values.

▪ “Are vertices i, j adjacent?” in Θ(1) time.

▪ Finding all neighbors of a vertex is slow for
large, sparse graphs.

Adjacency lists. List of lists (arrays?).
List i holds neighbors of vertex i.

▪ “Are vertices i, j adjacent?” in Θ(log N) time
if lists are sorted arrays; Θ(N) if not.

▪ Finding all neighbors can be faster.

0

1 2

3

Graph

0 1 2 3

0 1 0 10

1 0 0 01

0 0 0 02

1 0 0 03

Adjacency

Matrix

0: 1, 3

1: 0
2:

3: 0

Adjacency

Lists

N: the number
of vertices.

Vertex
label

6

2024-12-04 CS 311 Fall 2024

Review
Introduction to Graphs [3/3]

When we analyze the efficiency of graph algorithms, we consider
both the number of vertices and the number of edges.

▪ N = number of vertices

▪ M = number of edges

When analyzing efficiency, we consider adjacency matrices &
adjacency lists separately.

The total size of the input is:

▪ For an adjacency matrix: N2. So Θ(N2).

▪ For adjacency lists: N + 2M. So Θ(N + M).

Some particular algorithm might have order (say) Θ(N + M log N).

7

Review
Graph Traversals — Introduction

To traverse a graph means to visit each vertex once.

Two important graph traversals:

Depth-first search (DFS)

Walk along edges, visiting
vertices as we go. When
there is nowhere new to go,
backtrack.

In both cases, we prefer to visit lower-numbered vertices first.

2024-12-04 CS 311 Fall 2024

Breadth-first search (BFS)

Proceed along all edges from a
vertex, visiting each of its
neighbors. Then visit its
neighbors’ neighbors, etc.

8

2024-12-04 CS 311 Fall 2024

Review
Graph Traversals — DFS [1/2]

DFS has a natural recursive formulation:

▪ Given a start vertex, visit it, and mark it as visited.

▪ For each of the start vertex’s neighbors:

▪ If this neighbor is unvisited, then do a DFS with this neighbor as the

start vertex.

Recursion can be eliminated with a Stack—of course. But we can
be more intelligent than the brute-force method.

6

3

1

2

5

DFS: 1, 2, 3, 5, 4, 6, 7

47

9

2024-12-04 CS 311 Fall 2024

Review
Graph Traversals — DFS [2/2]

Algorithm DFS [non-recursive]

▪ Mark all vertices as unvisited.

▪ For each vertex:

▪ Do algorithm DFS’ with this vertex as start.

Algorithm DFS’ [non-recursive]

▪ Set Stack to empty.

▪ Push start vertex on Stack.

▪ Repeat while Stack is non-empty:

▪ Pop top of Stack.

▪ If this vertex is not visited, then:

▪ Visit it.

▪ Push its not-visited neighbors on the Stack.

DONE

▪ Based on the above, write a non-recursive function to do a DFS on
a graph, given adjacency lists.

See graph_traverse.cpp.

This part is all we need, if
the graph is connected
(all one piece). The above
makes it work for all
graphs, including
disconnected graphs.

10

2024-12-04 CS 311 Fall 2024

Review
Graph Traversals — BFS

We can easily do a BFS manually by keeping track of those vertices
for which we have looked at all neighbors.

DONE

▪ Modify our DFS function to do BFS.

▪ BFS reverses the priority of neighbors of vertex visited most recently vs.

neighbors of vertices visited earliest.

▪ Thus, replace the Stack with a Queue. See graph_traverse.cpp.

BFS: 1, 2, 3, 6, 5, 7, 4

6

3

1

2

5

47

11

2024-12-04 CS 311 Fall 2024

Review
Graph Traversals — Efficiency

We can analyze the DFS and BFS algorithms by looking, first, at
how much processing is done for each vertex.

Second, we look at how much is done for each edge when the
graph is given via adjacency lists, or each matrix row when the
graph is given via an adjacency matrix.

When given adjacency lists, each algorithm is Θ(N + M). And when
given an adjacency matrix, each algorithm is Θ(N2).

In all cases, the running time is of the same order as the total size
of the input. So there cannot be DFS/BFS algorithms that are
much faster than those we covered.

12

2024-12-04 CS 311 Fall 2024

Review
Graph Traversals — Try It! [1/2]

For each graph below, write the order in which the vertices will be
visited in a DFS and in a BFS.

Answers on next slide.

1

5

4

2

3

6

4

2

6

3

5

1

13

2024-12-04 CS 311 Fall 2024

Review
Graph Traversals — Try It! [2/2]

For each graph below, write the order in which the vertices will be
visited in a DFS and in a BFS.

Answers

4

2

6

3

5

1

BFS: 1, 2, 5, 6, 3, 4

DFS: 1, 2, 5, 3, 4, 6

4

2

6

3

5

1

BFS: 1, 2, 3, 4, 5, 6

DFS: 1, 2, 3, 5, 6, 4

1

5

4

2

3

6

1

5

4

2

3

6

14

Spanning Trees

2024-12-04 CS 311 Fall 2024 15

2024-12-04 CS 311 Fall 2024

Spanning Trees
Introduction [1/3]

A tree is a graph that:

▪ Is connected (all one piece).

▪ Has no cycles.

A spanning tree in a graph G is a tree that:

▪ Includes only vertices and edges of G.

▪ Includes all vertices of G.

Fact. Every connected graph has a spanning tree.

An important problem: given a weighted graph, find a minimum
spanning tree—a spanning tree of minimum total weight.

There are several nice algorithms that solve this problem.

1

2

8

3
4

2

7
6

1

5

6

5

Disconnected

Graph

Connected

Graph

Here, “tree”
does not mean
“rooted tree”.

16

2024-12-04 CS 311 Fall 2024

Spanning Trees
Introduction [2/3] (Try It!)

Try to find a minimum spanning tree in the following weighted
graph. Draw what you find, and determine its total weight.

Blue numbers are edge weights.

Answer on next slide.

1

2

4

3

5

6

7

17

2024-12-04 CS 311 Fall 2024

Spanning Trees
Introduction [3/3] (Try It!)

Try to find a minimum spanning tree in the following weighted
graph. Draw what you find, and determine its total weight.

Blue numbers are edge weights.

1

2

4

3

5

6

7
1

2

4

3

5

6

7

Total weight = 1 + 2 + 4 + 7 = 14

18

2024-12-04 CS 311 Fall 2024

Spanning Trees
Greedy Algorithms

We can find a minimum spanning tree using a greedy algorithm.

A greedy algorithm is “shortsighted”. It proceeds in a series of
choices, each based on what is known at the time. Choices are:

▪ Feasible. Each makes sense.

▪ Locally optimal. Best possible based on current information.

▪ Irrevocable. Once a choice is made, it is permanent. A greedy
algorithm never backtracks.

Being greedy is usually not a good way to get correct answers.

However, in the cases when being greedy gives correct results, it
tends to be very fast.

This idea is not just for minimum spanning trees; there are many
useful greedy algorithms. See CS 411.

19

2024-12-04 CS 311 Fall 2024

Spanning Trees
Prim’s Algorithm — Idea

Here is an idea for a greedy algorithm to find a minimum spanning
tree in a connected weighted graph.

▪ One vertex is specified as start.

▪ As the algorithm proceeds, we add edges to a tree. Using these
edges, we are able to reach more and more vertices from start.

▪ Procedure. Repeatedly add the lowest-weight edge from a reachable
vertex to a non-reachable vertex, until all vertices are reachable.

This idea leads to a—correct!—greedy algorithm to find a minimum
spanning tree: Prim’s Algorithm, also called the Prim-Jarník
Algorithm. [V. Jarník 1930, R. C. Prim 1957, E. Dijkstra 1959]

1

2

8

3
4

2

7
6

1

5

6

5

20

2024-12-04 CS 311 Fall 2024

Spanning Trees
Prim’s Algorithm — Description

Prim’s Algorithm

▪ Given: Connected graph, weights on the edges; one vertex is start.

▪ Returns: Edge set of a minimum spanning tree.

▪ Procedure:

▪ Mark all vertices as not-reachable.

▪ Set edge set of tree to empty.

▪ Mark start vertex as reachable.

▪ Repeat while there exist not-reachable vertices:

▪ Find lowest weight edge joining a reachable vertex to a not-reachable vertex.

▪ Add this edge to the tree.

▪ Mark the not-reachable endpoint of this edge as reachable.

▪ Return edge set of tree.

1

2

8

3
4

2

7
6

1

5

6

5

It is not obvious that
Prim’s Algorithm
correctly finds a

minimum spanning
tree. But it does!

21

2024-12-04 CS 311 Fall 2024

Spanning Trees
Prim’s Algorithm — Issues [1/2]

How can we efficiently find the lowest-weight edge between
reachable and a not-reachable vertices?

▪ Use a Priority Queue holding edges, ordered by weight and
implemented as a Minheap. So we do getFront & delete on the edge
of least weight.

▪ Insert edges that join reachable & not-reachable vertices.

▪ When to insert? When marking a vertex as reachable, insert into
the PQ all edges from this vertex to not-reachable neighbors.

▪ This means that, for each edge in the PQ, at some point, it joined
reachable & non-reachable vertices.

▪ When getting an edge from the PQ, check to be sure it still joins
reachable & not-reachable vertices. If not, skip it.

▪ When the PQ is empty, quit.
It was mentioned a
few weeks ago that
we would eventually
cover an application
of a Priority Queue.

This is it!

22

2024-12-04 CS 311 Fall 2024

Spanning Trees
Prim’s Algorithm — Issues [2/2]

How can we represent a weighted graph?

▪ Use something like an adjacency matrix, but instead of storing 0/1,
store weights.

▪ Also allow each entry in the matrix to have a special value meaning
no edge.

▪ We may wish to have adjacency lists as well, for efficiency.

When the spanning tree is finished, the PQ may not be empty yet.

▪ Easy optimization: track the number of non-reachable vertices. Stop
when this is zero.

▪ Equivalently, stop when the tree has N–1 edges, where N is the
number of vertices in the graph.

23

2024-12-04 CS 311 Fall 2024

Spanning Trees
Prim’s Algorithm — CODE

TO DO

▪ Implement Prim’s Algorithm.
▪ Use std::priority_queue to find the lowest-weight edge.

Done. See prim.cpp.

24

2024-12-04 CS 311 Fall 2024

Spanning Trees
Prim’s Algorithm — Efficiency [1/3]

What is the order of our implementation of Prim’s Algorithm?

▪ It does something with each vertex.

▪ It does something with each edge.

▪ The latter may involve insertion & deletion in a Priority Queue—
implemented using a Binary Heap.

▪ We do a lot of these, so we can ignore the “amortized” in the time
required for the Priority Queue insertion.

Result: Θ(N + M log M).

For a connected graph, we have M ≥ N – 1.

So: Θ(M log M).

25

2024-12-04 CS 311 Fall 2024

Spanning Trees
Prim’s Algorithm — Efficiency [2/3]

Our Prim’s Algorithm implementation is Θ(M log M).

But there are implementations that are a bit more efficient.

Idea #1. Have the Priority Queue hold vertices, ordered by cost,
not edges.

▪ The cost of a non-reachable vertex is the cost of the least weight
edge from it to a reachable vertex—or ∞, if there is no such edge.

▪ When we mark a vertex as reachable, we may need to update the
cost of some of the vertices in the Priority Queue.

▪ So we need a structure with more operations than a Priority Queue.

▪ We can use a Binary Heap (Minheap) in which each vertex in the
graph keeps track of where it is in the Heap. When we reduce the
cost of a vertex, we do a sift-up on that vertex.

▪ This operation is called decrease-key (or increase-key for a
Maxheap). It is logarithmic time for a Binary Heap.

26

2024-12-04 CS 311 Fall 2024

Spanning Trees
Prim’s Algorithm — Efficiency [3/3]

Idea #2 (used with Idea #1). Replace the Binary Heap with a
Fibonacci Heap. [M. L. Fredman & R. E. Tarjan 1987]

▪ A Fibonacci Heap is a data structure similar to a Binary Heap, but:

▪ Insert is Θ(1).

▪ Increase-key (decrease-key for a Minheap)
is amortized Θ(1).

▪ Delete is amortized Θ(log n).

▪ No array representation is used.

▪ Prim’s Algorithm goes through every vertex
and every edge, so we can ignore the
“amortized” when finding its running time.

▪ For each edge, we do a fixed number of operations that are all
(possibly amortized) constant-time.

▪ For each vertex, we do a fixed number of operations that are all
(possibly amortized) constant-time or logarithmic-time.

Result. Using Ideas #1 & #2, Prim’s Algorithm is Θ(M + N log N).

Our version: Θ(M log M).

40

2

16

4

9 27

14 711

Fibonacci Heap

27

2024-12-04 CS 311 Fall 2024

Spanning Trees
Kruskal’s Algorithm

Another greedy algorithm to find a minimum spanning tree:
Kruskal’s Algorithm [J. Kruskal 1956].

Procedure

▪ Set edge set of tree to empty.

▪ Repeat:

▪ Add the least-weight edge joining two vertices that cannot be reached
from each other using edges added so far.

▪ Return edge set of tree.

To implement Kruskal’s Algorithm well, we need an efficient way to
check whether a vertex can be reached from another vertex.

We cover a solution to this problem soon!

1

2

8

3
4

2

7
6

1

5

6

5

Same spanning
tree as Prim’s
Algorithm, but

constructed in a
different order.

28

	Slide 1: Spanning Trees
	Slide 2: The Rest of the Course Overview
	Slide 3: Module Overview Graph Algorithms
	Slide 4
	Slide 5: Review Introduction to Graphs [1/3]
	Slide 6: Review Introduction to Graphs [2/3]
	Slide 7: Review Introduction to Graphs [3/3]
	Slide 8: Review Graph Traversals — Introduction
	Slide 9: Review Graph Traversals — DFS [1/2]
	Slide 10: Review Graph Traversals — DFS [2/2]
	Slide 11: Review Graph Traversals — BFS
	Slide 12: Review Graph Traversals — Efficiency
	Slide 13: Review Graph Traversals — Try It! [1/2]
	Slide 14: Review Graph Traversals — Try It! [2/2]
	Slide 15
	Slide 16: Spanning Trees Introduction [1/3]
	Slide 17: Spanning Trees Introduction [2/3] (Try It!)
	Slide 18: Spanning Trees Introduction [3/3] (Try It!)
	Slide 19: Spanning Trees Greedy Algorithms
	Slide 20: Spanning Trees Prim’s Algorithm — Idea
	Slide 21: Spanning Trees Prim’s Algorithm — Description
	Slide 22: Spanning Trees Prim’s Algorithm — Issues [1/2]
	Slide 23: Spanning Trees Prim’s Algorithm — Issues [2/2]
	Slide 24: Spanning Trees Prim’s Algorithm — CODE
	Slide 25: Spanning Trees Prim’s Algorithm — Efficiency [1/3]
	Slide 26: Spanning Trees Prim’s Algorithm — Efficiency [2/3]
	Slide 27: Spanning Trees Prim’s Algorithm — Efficiency [3/3]
	Slide 28: Spanning Trees Kruskal’s Algorithm

