
Graph Traversals

CS 311 Data Structures and Algorithms

Lecture Slides

Monday, December 2, 2024

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2005–2024 Glenn G. Chappell

Some material contributed by Chris Hartman



2024-12-02 CS 311 Fall 2024

The Rest of the Course
Overview

Final Topics

▪ External Data

▪ Previously, we dealt only with data stored in memory.

▪ Suppose, instead, that we wish to deal with data stored on an external 
device, accessed via a relatively slow connection and available in chunks 

(data on a disk, for example).

▪ How does this affect the design of algorithms and data structures?

▪ Graph Algorithms

▪ A graph models relationships between pairs
of objects.

▪ This is a very general notion. Algorithms for

graphs often have very general applicability.



Drawing of 

a Graph

This usage of “graph” has 
nothing to do with the graph 
of a function. It is a different 

definition of the word.

(part) 

2



Review

2024-12-02 CS 311 Fall 2024 3



Review
External Data [1/5]

We considered data that are accessed via a slow channel.

Typically, the channel transmits data in chunks: blocks.

Thus, minimize the number of block accesses.

External Sorting: Merge Sort variant

▪ Stable Merge works well with block-access data.

▪ Use temporary files for the necessary buffers.

External Table Implementation #1: Hash Table

▪ This works well: open hashing, with each bucket stored in as few 
blocks as possible. However it does not seem to be used much.

2024-12-02 CS 311 Fall 2024

Client Server

“Here”: Where our 
program runs

“There”: Has data 
storage

Slow channel

4



2024-12-02 CS 311 Fall 2024

Review
External Data [2/5]

External Table Implementation #2: B-Tree

A B-Tree of degree m (m ≥ 3) is a ceiling(m/2) … m Tree.

▪ A node has ceiling(m/2)–1 … m–1 items.

▪ Except: The root can have 1 … m–1 items.

▪ All leaves are at the same level.

▪ Non-leaves have 1 more child than # of items.

▪ The order property holds, as for 2-3 Trees and 2-3-4 Trees.

▪ Degree = max # of children = # of items in an over-full node.

2-3 Tree = B-Tree of degree 3. 2-3-4 Tree = B-Tree of degree 4.

Shown is a B-Tree of degree 7.

In practice, the degree may be much higher (for example, 50).

12 58 84

2 7 10 15 27 28 34 39 52 87 88 91 93 9860 63 71 81

B-Tree

5



2024-12-02 CS 311 Fall 2024

Review
External Data [3/5]

Illustration of B-Tree insert.

▪ Insert 40 into this B-Tree of degree 7.

12 58 84

2 7 10 15 27 28 34 39 52 87 88 91 93 9860 63 71 81

12 58 84

2 7 10 15 27 28 3940 52 87 88 91 93 9860 63 71 8134

12 58 84

2 7 10 15 27 28 39 40 52 87 88 91 93 9860 63 71 81

34

40

Over-full nodes 
are blue.

An over-full node 
has 7 items.

6



Review
External Data [4/5]

There are a number of B-Tree variations. A common one: B+ 
Tree. This is just like a B-Tree, except:

▪ Keys in non-leaf nodes are duplicated in the leaves, while 
maintaining the order property.

▪ Associated values—if any—are stored only in the leaves.

▪ Leaves are joined into an auxiliary Linked List. This minimizes the 
number of blocks we must read during a traversal.

2024-12-02 CS 311 Fall 2024

Each key in a non-leaf is duplicated 
in a leaf. The order property holds.

The associated value for 
key 84 (or a pointer to it) 
is only stored here.

Auxiliary Linked List

12 58 8434B+ Tree

head

2 7 10 15 27 28 39 40 52 84 88 91 93 9860 63 71 8112 34 58 87

It is not uncommon for a B+ Tree 
to be referred to as a “B-Tree”. 

7



Review
External Data [5/5]

To the right is a Table dataset. Below on the
left is a B-Tree holding this dataset. Below
on the right is the corresponding B+ Tree.
Both keys and associated values are shown.

Modern filesystems typically involve a B-Tree or variant internally. 
B+ Trees are a particularly common variant.

These trees are also used in relational-database implementation.

2024-12-02 CS 311 Fall 2024

b eB+ Tree

head

(b,1) (e,7)

(a,5) (f,2)(c,7) (d,3) (a,5) (f,2)(c,7) (d,3)(b,1) (e,7)

B-Tree

Key Value

a 5

b 1

c 7

d 3

e 7

f 2

8



Module Overview
Graph Algorithms

Topics

▪ Introduction to Graphs

▪ Graph Traversals

▪ Spanning Trees

▪ Other Graph Topics

2024-12-02 CS 311 Fall 2024



9



2024-12-02 CS 311 Fall 2024

Review
Introduction to Graphs [1/3]

A graph consists of vertices and edges.

▪ An edge joins two vertices: its endpoints.

▪ 1 vertex, 2 vertices (Latin plural).

▪ Two vertices joined by an edge are 
adjacent; each is a neighbor of the other.

In a weighted graph, each edge has a 
weight (or cost).

▪ The weight usually gives the resource 
expenditure required to use that edge.

▪ We typically choose edges to minimize the 
total weight of some kind of collection.

If we give each edge a direction, then we 
have a directed graph, or digraph.

▪ Directed edges are called arcs.

Vertex

Edge

Arc
(directed edge)

Weight 
(cost)

Graph

Weighted

Graph

Digraph

2

61

2

10



2024-12-02 CS 311 Fall 2024

Review
Introduction to Graphs [2/3]

Two common ways to represent graphs.

Adjacency matrix. 2-D array of 0/1 values.

▪ “Are vertices i, j adjacent?” in Θ(1) time.

▪ Finding all neighbors of a vertex is slow for 
large, sparse graphs.

Adjacency lists. List of lists (arrays?).
List i holds neighbors of vertex i.

▪ “Are vertices i, j adjacent?” in Θ(log N) time 
if lists are sorted arrays; Θ(N) if not.

▪ Finding all neighbors can be faster.

0

1 2

3

Graph

0 1 2 3

0 1 0 10

1 0 0 01

0 0 0 02

1 0 0 03

Adjacency 

Matrix

0: 1, 3

1: 0
2:

3: 0

Adjacency

Lists

Both can be generalized 
to handle digraphs.

N: the number 
of vertices.

Vertex 
label

11



2024-12-02 CS 311 Fall 2024

Review
Introduction to Graphs [3/3]

When we analyze the efficiency of graph algorithms, we consider 
both the number of vertices and the number of edges.

▪ N = number of vertices

▪ M = number of edges

When analyzing efficiency, we consider adjacency matrices & 
adjacency lists separately.

The total size of the input is:

▪ For an adjacency matrix: N2. So Θ(N2).

▪ For adjacency lists: N + 2M. So Θ(N + M).

Some particular algorithm might have order (say) Θ(N + M log N).

12



Graph Traversals

2024-12-02 CS 311 Fall 2024 13



Graph Traversals
Introduction

We covered Binary Tree traversals: preorder, inorder, postorder.

We traverse graphs as well: visit each vertex once.

Depth-first search (DFS)

Walk along edges, visiting
vertices as we go. When
there is nowhere new to go,
backtrack.

In both cases, we prefer to visit lower-numbered vertices first.

2024-12-02 CS 311 Fall 2024

 

Breadth-first search (BFS)

Proceed along all edges from a 
vertex, visiting each of its 
neighbors. Then visit its 
neighbors’ neighbors, etc.

14



2024-12-02 CS 311 Fall 2024

Graph Traversals
DFS [1/2]

DFS has a natural recursive formulation:

▪ Given a start vertex, visit it, and mark it as visited.

▪ For each of the start vertex’s neighbors:

▪ If this neighbor is unvisited, then do a DFS with this neighbor as the 

start vertex.

Recursion can be eliminated with a Stack—of course. But we can 
be more intelligent than the brute-force method.

2

6 5

3

4

2

3

4

DFS: 1, 2, 5, 6, 3, 4 DFS: 1, 2, 3, 4

2 3

4 5

9 7

DFS: 1, 2, 4, 9, 8, 5, 7, 6, 3

1 1 1

6

8

We will write a traversal by listing the 
vertex labels in the order they are visited.

15



2024-12-02 CS 311 Fall 2024

Graph Traversals
DFS [2/2]

Algorithm DFS [non-recursive]

▪ Mark all vertices as unvisited.

▪ For each vertex:

▪ Do algorithm DFS’ with this vertex as start.

Algorithm DFS’ [non-recursive]

▪ Set Stack to empty.

▪ Push start vertex on Stack.

▪ Repeat while Stack is non-empty:

▪ Pop top of Stack.

▪ If this vertex is not visited, then:

▪ Visit it.

▪ Push its not-visited neighbors on the Stack.

TO DO

▪ Based on the above, write a non-recursive function to do a DFS on 
a graph, given adjacency lists.

Done. See graph_traverse.cpp.

This part is all we need, if 
the graph is connected 
(all one piece).

The above makes it work 
for all graphs, including 
disconnected graphs.

16



2024-12-02 CS 311 Fall 2024

Graph Traversals
BFS [1/2]

We can easily do a BFS manually by keeping track of those vertices 
for which we have looked at all neighbors.

2

6 5

3

4

2

3

4

BFS: 1, 2, 3, 5, 6, 4 BFS: 1, 2, 4, 3

2 3

4 5

9 7

BFS: 1, 2, 3, 5, 4, 6, 8, 9, 7

1 1 1

6

8

17



2024-12-02 CS 311 Fall 2024

Graph Traversals
BFS [2/2]

TO DO

▪ Modify our DFS function to do BFS.

▪ BFS reverses the priority of neighbors of vertex visited most recently vs. 
neighbors of vertices visited earliest.

▪ Thus, replace the Stack with a Queue.

Done. See graph_traverse.cpp.

18



2024-12-02 CS 311 Fall 2024

Graph Traversals
Try It! [1/2]

For each graph below, write the order in which the vertices will be 
visited in a DFS and in a BFS.

Answers on next slide.

1

5

4

2

3

6

4

2

6

3

5

1

19



2024-12-02 CS 311 Fall 2024

Graph Traversals
Try It! [2/2]

For each graph below, write the order in which the vertices will be 
visited in a DFS and in a BFS.

Answers

1

5

4

2

3

6

4

2

6

3

5

1

BFS: 1, 2, 3, 4, 5, 6

DFS: 1, 2, 3, 4, 6, 5

BFS: 1, 2, 6, 5, 3, 4

DFS: 1, 2, 5, 3, 4, 6

4

2

6

3

5

1

1

5

4

2

3

6

20



2024-12-02 CS 311 Fall 2024

Graph Traversals
Efficiency [1/2]

What is the order of our DFS & BFS algorithms, when given 
adjacency lists?

Treat push/pop & enqueue/dequeue as constant time.

▪ Push & enqueue may be amortized constant time, due to reallocate-
and-copy, but since we are doing a lot of push/enqueue operations, 
they average out to constant time.

We process each vertex.

▪ There are N of these.

We also do push and pop operations.

▪ Each time we push—or check if we should push—we are moving 
across an edge from one vertex to another. There are two directions 
to move across an edge: toward one endpoint or the other.

▪ So the number of push operations is no more than 2M.

▪ The number of pop operations is the same.

Conclusion. Each algorithm is Θ(N + 2M) = Θ(N + M).

The concept of amortized constant time 
is very useful in reasoning of this kind.

21



2024-12-02 CS 311 Fall 2024

Graph Traversals
Efficiency [2/2]

What would the order of our DFS & BFS algorithms be, if they were 
given an adjacency matrix?

Abbreviated Argument

▪ We process each vertex. There are N vertices.

▪ When looking for vertices to push, we examine an entire row of the 
adjacency matrix.

▪ Eventually, we will examine every entry of every row: N2.

Conclusion. Each algorithm is Θ(N + N2) = Θ(N2).

Regardless of whether it is given adjacency lists or an adjacency 
matrix, the order of each algorithm is the same as the size of 
the input—which is the fastest efficiency category possible for an 
algorithm that reads all of its input.

22


	Slide 1: Graph Traversals
	Slide 2: The Rest of the Course Overview
	Slide 3
	Slide 4: Review External Data [1/5]
	Slide 5: Review External Data [2/5]
	Slide 6: Review External Data [3/5]
	Slide 7: Review External Data [4/5]
	Slide 8: Review External Data [5/5]
	Slide 9: Module Overview Graph Algorithms
	Slide 10: Review Introduction to Graphs [1/3]
	Slide 11: Review Introduction to Graphs [2/3]
	Slide 12: Review Introduction to Graphs [3/3]
	Slide 13
	Slide 14: Graph Traversals Introduction
	Slide 15: Graph Traversals DFS [1/2]
	Slide 16: Graph Traversals DFS [2/2]
	Slide 17: Graph Traversals BFS [1/2]
	Slide 18: Graph Traversals BFS [2/2]
	Slide 19: Graph Traversals Try It! [1/2]
	Slide 20: Graph Traversals Try It! [2/2]
	Slide 21: Graph Traversals Efficiency [1/2]
	Slide 22: Graph Traversals Efficiency [2/2]

