
The Rest of the Course
External Data
Introduction to Graphs

CS 311 Data Structures and Algorithms

Lecture Slides

Monday, November 25, 2024

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2005–2024 Glenn G. Chappell

Some material contributed by Chris Hartman

Unit Overview
Tables & Priority Queues

Topics

▪ Introduction to Tables

▪ Priority Queues

▪ Binary Heap Algorithms

▪ Heaps & Priority Queues in the C++ STL

▪ 2-3 Trees

▪ Other self-balancing search trees

▪ Hash Tables

▪ Prefix Trees

▪ Tables in the C++ STL & Elsewhere

2024-11-25 CS 311 Fall 2024

2

Review

2024-11-25 CS 311 Fall 2024 3

2024-11-25 CS 311 Fall 2024

Review
Where Are We? — The Big Challenge

Our problem for most of the rest of the semester:

▪ Store: A collection of data items, all of the same type.

▪ Operations:

▪ Access items [single item: retrieve/find, all items: traverse].

▪ Add new item [insert].

▪ Eliminate existing item [delete].

▪ Time & space efficiency are desirable.

A solution to this problem is a container.

In a generic container, client code can specify the value type.

Note the three primary
single-item operations:
retrieve, insert, delete.
We will see these over &
over again.

4

2024-11-25 CS 311 Fall 2024

Review
Introduction to Tables

A Table allows for arbitrary key-based look-up.

Three single-item operations: retrieve, insert, delete by key.

A Table implementation typically holds key-value pairs.

Three ideas for improving efficiency:

1. Restricted Table → Priority Queues

2. Keep a tree balanced → Self-balancing search trees

3. Magic functions → Hash Tables

(4, Peg) (9, Ann) (12, Ed)

Inefficient ImplementationsTable

Key Value

12 Ed

04 Peg

09 Ann

(12, Ed) (4, Peg) (9, Ann)

(4, Peg) (12, Ed)

(9, Ann)

5

Unit Overview
Tables & Priority Queues

Topics

▪ Introduction to Tables

▪ Priority Queues

▪ Binary Heap Algorithms

▪ Heaps & Priority Queues in the C++ STL

▪ 2-3 Trees

▪ Other self-balancing search trees

▪ Hash Tables

▪ Prefix Trees

▪ Tables in the C++ STL & Elsewhere

2024-11-25 CS 311 Fall 2024

Idea #1: Restricted Table

Idea #2: Keep a tree balanced

Idea #3: Magic functions

Several lousy implementations

A special-purpose
implementation: “the Radix
Sort of Table implementations”

6

2024-11-25 CS 311 Fall 2024

Overview of Advanced Table Implementations

We cover the following advanced Table implementations.

▪ Self-balancing search trees

▪ To make things easier, allow more children (?):

▪ 2-3 Tree

▪ Up to 3 children

▪ 2-3-4 Tree

▪ Up to 4 children

▪ Red-Black Tree

▪ Binary Tree representation of a 2-3-4 Tree

▪ Or back up and try for a strongly balanced
Binary Search Tree again:

▪ AVL Tree

▪ Alternatively, forget about trees entirely:

▪ Hash Table

▪ Finally, “the Radix Sort of Table implementations”:

▪ Prefix Tree

Idea #2:
Keep a tree balanced

Idea #3:
Magic functions

Later, we cover
other self-balancing

search trees:
B-Trees, B+ Trees.

7

The Rest of the Course

2024-11-25 CS 311 Fall 2024 8

2024-11-25 CS 311 Fall 2024

The Rest of the Course
From the First Day of Class: Course Overview — Topics

The following topics will be covered, roughly in order:

▪ Advanced C++

▪ Software Engineering Concepts

▪ Recursion

▪ Searching

▪ Algorithmic Efficiency

▪ Sorting

▪ Data Abstraction

▪ Basic Abstract Data Types & Data Structures:

▪ Smart Arrays & Strings

▪ Linked Lists

▪ Stacks & Queues

▪ Trees (various kinds)

▪ Priority Queues

▪ Tables

▪ Briefly: external data, graph algorithms.

Goal: Practical generic containers

A container is a data structure holding
multiple items, usually all the same type.

A generic container is one that can hold
objects of client-specified type.

9

2024-11-25 CS 311 Fall 2024

The Rest of the Course
Overview

In the time remaining, we look briefly at two more topics.

External Data

▪ Previously, we dealt only with data stored in memory.

▪ Suppose we wish to deal with data stored on an external device,
accessed via a relatively slow connection and available in chunks
(data on a disk, for example).

▪ How does this affect the design of algorithms and data structures?

Graph Algorithms

▪ A graph models relationships between pairs
of objects.

▪ This is a very general notion. Algorithms for
graphs often have very general applicability.

Drawing of

a GraphThis usage of “graph” has nothing to do with the graph
of a function. It is a different definition of the word.

10

External Data

2024-11-25 CS 311 Fall 2024 11

External Data
Introduction — Client/Server

It is common for computing resources to be joined by a relatively
poor (slow, perhaps unreliable) communication channel.

It can be helpful to think in terms of a client/server paradigm.

Now we consider data that are accessed via such a slow channel.

Overriding concern: minimize use of the channel.

This has a significant impact on data structure & algorithm design.

2024-11-25 CS 311 Fall 2024

Client Server

“Here”: Where our
program runs

“There”: Has data
storage

Slow channel

Client Server

Needs a service
performed

Performs service for
client

Slow channel

12

2024-11-25 CS 311 Fall 2024

External Data
Introduction — External Storage

External storage is storage that is not part of main memory.

Compared with main memory, external storage is typically:

▪ More permanent.

▪ Larger.

▪ Much slower.

External storage is usually accessed in sizable chunks: blocks. It
can be expensive (slow) to access a data item, but there is little
additional cost to access other items in the same block.

In our discussion, we will:

▪ Do all processing on the client side of the channel.

▪ Usually not expect to hold an entire dataset in memory at once.

▪ Expect essentially unlimited storage to be available on the server.

13

2024-11-25 CS 311 Fall 2024

External Data
Introduction — Reliability Issues

In practice, external storage read & write operations are
significantly less reliable than those to memory.

Q. What happens if a write fails in the middle of an algorithm?

A. The data on the device may be left in an intermediate state.

Q. How can we take this into account when designing algorithms
that deal with data on external storage?

A. The intermediate state of data should be either:

▪ A valid state,

▪ Or, if that is not possible, a state that can easily be fixed.

In particular: when writing the equivalent of a pointer to data
in external storage, write the data first, then the pointer.

14

2024-11-25 CS 311 Fall 2024

External Data
Introduction — Two Tasks

Two tasks have occupied much of our time this semester:

▪ Sorting.

▪ Table implementation.

We consider these in the context of data on external storage.

Sorting. Sort a file—perhaps line by line.

Table Implementation. Store a large Table externally.

We are interested in time efficiency of sorting, as well as the
various Table operations—traverse, retrieve, insert, delete.

It may be helpful to change our model of computation, making our
basic operation the block read/write.

15

2024-11-25 CS 311 Fall 2024

External Data
Sorting

We can do a reasonably efficient Stable Merge on two files.

▪ General-purpose Stable Merge uses an additional buffer. We can
use temporary files for this.

▪ Stable Merge goes through both the data to be merged and the
buffer in sequential order.

▪ Since we access data in order, a Stable Merge operation should not
read/write any single block more than once.

This idea gives us a reasonably efficient external Merge Sort.
Note that this will be stable.

16

External Data
Table Implementation — Options

Options for implementing an external Table are basically as before:
Hash Tables and self-balancing search trees. But details vary.

Hash Tables

▪ If there are no collisions, then the hash function tells us where an
item is. Retrieve it with a single block read.

▪ Collision resolution is cheap, if the key is stored in that same
block—or one of a small number of blocks with known locations.

▪ Therefore: open hashing, with each bucket stored in as few blocks
as possible.

▪ This idea does not seem to be used very much. I am not sure why.

Self-Balancing Search Trees

▪ Red-Black Trees are optimized for in-memory work. For external
data, they require looking at too many blocks.

▪ Next we look at a more appropriate structure: B-Trees.

2024-11-25 CS 311 Fall 2024 17

External Data
Table Implementation — B-Trees [1/4]

We can generalize 2-3 Trees for external storage by making the
nodes large. (Perhaps we store one node per block?)

Q. Think: why are 2-3 Trees nice?

A. An over-full node splits into 2 small nodes + 1 item to move up.

Can we make a nice self-balancing search tree with larger nodes?

▪ Consider a 2-3 Tree (max # of items in a node: 3–1 = 2).
Over-full (3 items) splits 1 + 1 + 1 to move up.

▪ If max # of items in a node = 4:
over-full (5 items) splits 2 + 2 + 1 to move up: a 3-4-5 Tree.

▪ If max # of items in a node = 6:
over-full (7 items) splits 3 + 3 + 1 to move up: a 4-5-6-7 Tree.

▪ And so on …

These are B-Trees. Max # of children is the degree of the B-Tree.

2024-11-25 CS 311 Fall 2024 18

2024-11-25 CS 311 Fall 2024

External Data
Table Implementation — B-Trees [2/4]

For m ≥ 3, a B-Tree of degree m is a ceiling(m/2) … m Tree.
[R. Bayer & E. McCreight 1970]

▪ A node has ceiling(m/2)–1 … m–1 items.

▪ Except: The root can have 1 … m–1 items.

▪ The order property holds, as for 2-3 Trees.

▪ All leaves are at the same level.

▪ Each node is either a leaf or has its maximum number of children.

▪ Degree = max # of children = # of items in an over-full node.

A B-Tree of degree 3 is a 2-3 Tree.

A B-Tree of degree 4 is a 2-3-4 Tree.

A B-Tree of degree 5 is a 3-4-5 Tree.

Shown is a B-Tree of degree 7.

In practice, the degree may be much higher (for example, 50).

12 58 84

2 7 10 15 27 28 34 39 52 87 88 91 93 9860 63 71 81

B-Tree

Why “B”?

We do not know. Perhaps
balanced, broad, bushy,
Bayer, or Boeing—where

Bayer & McCreight worked.

19

2024-11-25 CS 311 Fall 2024

External Data
Table Implementation — B-Trees [3/4]

How B-Tree Algorithms Work

▪ Traverse

▪ Like other search trees (generalize inorder traversal).

▪ If we have in-memory storage for h nodes, where h is the height of the
tree, then we only need to read each node once.

▪ Retrieve

▪ Like other search trees.

▪ Insert

▪ Generalizes 2-3 Tree Insert algorithm:

▪ Find the leaf that an item should go in.

▪ Insert into this leaf.

▪ If over-full, then split the node, with middle item moving up. Recursively
insert this item into the parent node.

▪ If the root becomes over-full, then split and create a new root.

▪ Delete

▪ Generalizes 2-3 Tree Delete algorithm. We will not cover the details.

12 58 84

2 7 10 15 27 28 34 39 52 87 88 91 93 9860 63 71 81

B-Tree

20

2024-11-25 CS 311 Fall 2024

External Data
Table Implementation — B-Trees [4/4]

Illustration of B-Tree insert.

▪ Insert 40 into this B-Tree of degree 7.

12 58 84

2 7 10 15 27 28 34 39 52 87 88 91 93 9860 63 71 81

12 58 84

2 7 10 15 27 28 3940 52 87 88 91 93 9860 63 71 8134

12 58 84

2 7 10 15 27 28 39 40 52 87 88 91 93 9860 63 71 81

34

40

Over-full nodes
are blue.

An over-full node
has 7 items.

21

External Data
Table Implementation — B+ Trees [1/2]

There are a number of B-Tree variations. Probably the most
common are B+ Trees. These are just like B-Trees, except:

▪ Keys in non-leaf nodes are duplicated in the leaves, while
maintaining the order property.

▪ Associated values—if any—are stored only in the leaves.

▪ Leaves are joined into an auxiliary Linked List. This minimizes the
number of blocks we must read during a traversal.

2024-11-25 CS 311 Fall 2024

Each key in a non-leaf is duplicated
in a leaf. The order property holds.

The associated value for
key 84 (or a pointer to it)
is only stored here.

Auxiliary Linked List

12 58 8434B+ Tree

head

2 7 10 15 27 28 39 40 52 84 88 91 93 9860 63 71 8112 34 58 87

It is not uncommon for a B+ Tree
to be referred to as a “B-Tree”.

22

External Data
Table Implementation — B+ Trees [2/2]

To fully illustrate the differences between
B-Trees and B+ Trees, we picture two such
trees holding the same dataset, with both
keys and associated values shown.

To the right is a Table dataset.

Below-left is a B-Tree holding this dataset.

Below-right is the corresponding B+ Tree.

2024-11-25 CS 311 Fall 2024

b e B+ Tree

head

(b,1) (e,7)

(a,5) (f,2)(c,7) (d,3) (a,5) (f,2)(c,7) (d,3)(b,1) (e,7)

B-Tree

Key Associated

Value

a 5

b 1

c 7

d 3

e 7

f 2

23

External Data
Table Implementation — Notes

For each of the covered external Table implementations, order of
operations is the same as for the in-memory versions.

In particular, for a B-Tree or a B+ Tree, retrieve/insert/delete by
key are Θ(log n), and traverse is Θ(n).

Modern filesystems typically involve a B+ Tree or variant
internally. (Only major exceptions that I know of: Microsoft’s
FAT filesystems.)

These trees are also used in relational-database implementation.

2024-11-25 CS 311 Fall 2024

12 58 8434B+ Tree

head

2 7 10 15 27 28 39 40 52 84 88 91 93 9860 63 71 8112 34 58 87

24

Module Overview
Graph Algorithms

Topics

▪ Introduction to Graphs

▪ Graph Traversals

▪ Spanning Trees

▪ Other Graph Topics

2024-11-25 CS 311 Fall 2024 25

Introduction to Graphs

2024-11-25 CS 311 Fall 2024 26

2024-11-25 CS 311 Fall 2024

Introduction to Graphs
Definition

A graph consists of vertices and edges.

▪ An edge joins two vertices: its endpoints.

▪ 1 vertex, 2 vertices (Latin plural).

▪ Two vertices joined by an edge are
adjacent; each is a neighbor of the other.

In a weighted graph, each edge has a
weight (or cost).

▪ The weight usually gives the resource
expenditure required to use that edge.

▪ We typically choose edges to minimize the
total weight of some kind of collection.

If we give each edge a direction, then we
have a directed graph, or digraph.

▪ Directed edges are called arcs.

Vertex

Edge

Arc
(directed edge)

Weight
(cost)

Graph

Weighted

Graph

Digraph

2

61

2

27

2024-11-25 CS 311 Fall 2024

Introduction to Graphs
Applications

We use graphs to model:

▪ Networks

▪ Vertices are nodes in network; edges are connections.

▪ Examples

▪ Communication

▪ Transportation

▪ Electrical

▪ Worldwide Web (edges are links)

▪ State Spaces

▪ Vertices are states; edges are transitions between states.

▪ Generally, situations in which things are related in pairs:

▪ Vertices are data-structure nodes; directed edges indicate pointers.

▪ Vertices are people, edges indicate relationships (friendship?).

▪ Vertices are tasks or events; edges join pairs that cannot occur at the

same time (e.g., because of conflicting resource needs).

28

2024-11-25 CS 311 Fall 2024

Introduction to Graphs
Representations [1/3]

How do we represent a graph in a computer
program?

Adjacency matrix. 2-D array of 0/1 values.

▪ “Are vertices i, j adjacent?” in Θ(1) time.

▪ Finding all neighbors of a vertex is slow for
large, sparse graphs.

▪ Sparse graph: one with relatively few edges.

Adjacency lists. List of lists (arrays?).
List i holds neighbors of vertex i.

▪ “Are vertices i, j adjacent?” in Θ(log N) time
if lists are sorted arrays; Θ(N) if not.

▪ Finding all neighbors can be faster.

0

1 2

3

Graph

0 1 2 3

0 1 0 10

1 0 0 01

0 0 0 02

1 0 0 03

Adjacency

Matrix

0: 1, 3

1: 0
2:

3: 0

Adjacency

Lists

Labels are
not part of
the matrix.

N: the number
of vertices
(more on this soon)

Both adjacency matrices and adjacency
lists can be generalized to handle digraphs.

Vertex
label

29

2024-11-25 CS 311 Fall 2024

Introduction to Graphs
Representations [2/3] (Try It!)

For the following graph, write (a) the adjacency matrix, and
(b) adjacency lists.

Answers on the next slide.

0

1 2

30

2024-11-25 CS 311 Fall 2024

Introduction to Graphs
Representations [3/3] (Try It!)

For the following graph, write (a) the adjacency matrix, and
(b) adjacency lists.

Answers

(a) (b)

Green numbers are optional
in the answer to part (a).

0

1 2

0 1 2

1 0

1 0 11

0 1 02

0: 1

1: 0, 2
2: 1

00

31

2024-11-25 CS 311 Fall 2024

Introduction to Graphs
Analyzing Efficiency

When an algorithm takes a graph, what is our “n”?

The number of vertices? The number of edges? Some combination?

We consider both the number of vertices
and the number of edges.

▪ N = number of vertices

▪ M = number of edges

Adjacency matrices & adjacency lists are considered separately.

The total size of the input is:

▪ For an adjacency matrix: N2. So Θ(N2).

▪ For adjacency lists: N + 2M. So Θ(N + M).

Some particular algorithm might have order (say) Θ(N + M log N).

I use upper case (N, M)
to make it clear that we

are talking about vertices
and edges, not the size of

the input as a whole.

The “2” is because each
edge corresponds to two
entries in the adjacency
lists—one for each
endpoint of the edge.

32

	Slide 1: The Rest of the Course External Data Introduction to Graphs
	Slide 2: Unit Overview Tables & Priority Queues
	Slide 3
	Slide 4: Review Where Are We? — The Big Challenge
	Slide 5: Review Introduction to Tables
	Slide 6: Unit Overview Tables & Priority Queues
	Slide 7: Overview of Advanced Table Implementations
	Slide 8
	Slide 9: The Rest of the Course From the First Day of Class: Course Overview — Topics
	Slide 10: The Rest of the Course Overview
	Slide 11
	Slide 12: External Data Introduction — Client/Server
	Slide 13: External Data Introduction — External Storage
	Slide 14: External Data Introduction — Reliability Issues
	Slide 15: External Data Introduction — Two Tasks
	Slide 16: External Data Sorting
	Slide 17: External Data Table Implementation — Options
	Slide 18: External Data Table Implementation — B-Trees [1/4]
	Slide 19: External Data Table Implementation — B-Trees [2/4]
	Slide 20: External Data Table Implementation — B-Trees [3/4]
	Slide 21: External Data Table Implementation — B-Trees [4/4]
	Slide 22: External Data Table Implementation — B+ Trees [1/2]
	Slide 23: External Data Table Implementation — B+ Trees [2/2]
	Slide 24: External Data Table Implementation — Notes
	Slide 25: Module Overview Graph Algorithms
	Slide 26
	Slide 27: Introduction to Graphs Definition
	Slide 28: Introduction to Graphs Applications
	Slide 29: Introduction to Graphs Representations [1/3]
	Slide 30: Introduction to Graphs Representations [2/3] (Try It!)
	Slide 31: Introduction to Graphs Representations [3/3] (Try It!)
	Slide 32: Introduction to Graphs Analyzing Efficiency

