
Thoughts on Assignment 8
Tables in the C++ STL & Elsewhere

CS 311 Data Structures and Algorithms

Lecture Slides

Friday, November 22, 2024

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2005–2024 Glenn G. Chappell

Some material contributed by Chris Hartman

Thoughts on Assignment 8

2024-11-22 CS 311 Fall 2024 2

Thoughts on Assignment 8
Overview

Assignment 8 is the last assignment this semester.

It includes two exercises:

▪ In Exercise A, you will write a complete C++ program (including
main!) that uses an STL Table implementation.

▪ In Exercise B, you will write a test program, using the doctest
framework, for a simple class.

2024-11-22 CS 311 Fall 2024 3

Thoughts on Assignment 8
Exercise A [1/3]

In Exercise A you will write a program that is given a filename. It
reads the file with that name and breaks it into words. Then it
prints certain information about those words.

You are to choose an appropriate STL Table implementation and
use it in your program.

The program needs to work, of course. But your choice of Table
implementation, and proper use of it, will also be factor in the
grading.

2024-11-22 CS 311 Fall 2024 4

Thoughts on Assignment 8
Exercise A [2/3]

A word is a sequence of non-space characters.

For example, suppose your program is given the name of a file
containing the following text.

dog dog? dog

dog dog? cat

The above file contains 6 words having 3 distinct values. In
lexicographic order, these values are the following:

▪ cat

▪ dog

▪ dog?

2024-11-22 CS 311 Fall 2024 5

Thoughts on Assignment 8
Exercise A [3/3]

If it can read the file, then your program should do the following.

▪ Print a message indicating the number of distinct words in the file.

▪ Go through these words in lexicographic order. For each, print, on
one line, the word, a colon, a blank, and then the number of times
that word appears in the file.

For the given file, the following should be printed.

Number of distinct words: 3

cat: 1

dog: 3

dog?: 2

2024-11-22 CS 311 Fall 2024

Text in file:

dog dog? dog

dog dog? cat

6

Thoughts on Assignment 8
Exercise B [1/9]

In Exercise B you will write a test program for a class called
Reverser. Your test program will use the doctest framework,
just like the test programs for previous Assignments.

Objects of class Reverser are function objects. The function is a
template that takes a range specified by two bidirectional
iterators and reverses the order of the values in it.

So Reverser should be usable as follows.

Reverser rr;

vector<int> vv { 1, 9, 2 };

rr(begin(vv), end(vv)); // Now values in vv are 2, 9, 1

The idea is that class Reverser would be defined in a header
reverser.hpp, with no associated source file. Your test program
will be in file reverser_test.cpp.

2024-11-22 CS 311 Fall 2024 7

Thoughts on Assignment 8
Exercise B [2/9]

We could write class Reverser as follows.

// class Reverser.

// Class invariants: None.

class Reverser {

public:

 // operator(). Given a range specified by two bidirectional

 // iterators. Reverses the order of the values in the range.

 // Throws what & when value type ops throw.

 // Basic guarantee

 // Exception neutral

 template<typename BDIter>

 void operator()(BDIer first, BDIter last) const

 { std::reverse(first, last); }

 // Default ctor, copy ctor, move ctor, copy =, move =, dctor:

 // automatically generated versions used.

};

2024-11-22 CS 311 Fall 2024

This code would go

in file reverser.hpp.

8

Thoughts on Assignment 8
Exercise B [3/9]

At the beginning of your test program (file reverser_test.cpp):

▪ #include the header for the code you wish to test.

▪ #define the symbol DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN, which
tells doctest to write function main. (And then do not write main!)

▪ #include the doctest header (doctest.h).

// reverser_test.cpp

// By Moonface Malaprop

// 2024-11-22 (I do my work early!)

// Test program for class Reverser

#include "reverser.hpp" // For class Reverser

#define DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN

 // doctest writes main for us

#include "doctest.h" // For doctest framework

2024-11-22 CS 311 Fall 2024

Code something like
this would go in your

test program: file
reverser_test.cpp.

9

Thoughts on Assignment 8
Exercise B [4/9]

After the initial includes, your test program should contain a
number of test cases. Each will look something like this:

TEST_CASE("Reverser: ranges of size 2")

{

 …

}

2024-11-22 CS 311 Fall 2024

A printable message
identifying the test case.

Code something like
this would go in your

test program: file
reverser_test.cpp.

10

Thoughts on Assignment 8
Exercise B [5/9]

Within a test case are one or more tests, which are done with a
REQUIRE directive. Inside parentheses after REQUIRE is an
expression of type bool, which is true if the test passes, and
false otherwise.

Other code may be included in a test case.

TEST_CASE("Reverser: ranges of size 2")

{

 Reverser rr;

 deque<double> dd { 1.2, 5.2 };

 deque<double> dd_rev { 5.2, 1.2 };

 rr(begin(dd), end(dd));

 REQUIRE(dd == dd_rev);

 …

}

2024-11-22 CS 311 Fall 2024

Code something like
this would go in your

test program: file
reverser_test.cpp.

11

Thoughts on Assignment 8
Exercise B [6/9]

You should also include INFO directives. Each of these takes a
string, which is printed if any following test fails.

TEST_CASE("Reverser: ranges of size 2")

{

 Reverser rr;

 deque<double> dd { 1.2, 5.2 };

 deque<double> dd_rev { 5.2, 1.2 };

 rr(begin(dd), end(dd));

 INFO("Reversing deque of size 2");

 REQUIRE(dd == dd_rev);

 …

}

2024-11-22 CS 311 Fall 2024

Code something like
this would go in your

test program: file
reverser_test.cpp.

12

Thoughts on Assignment 8
Exercise B [7/9]

Stream insertion (<<) may be used in an INFO directive.

TEST_CASE("Reverser: ranges of size 2")

{

 const size_t deque_size = 2;

 …

 INFO("Reversing deque of size " << deque_size);

 …

}

2024-11-22 CS 311 Fall 2024

Code something like
this would go in your

test program: file
reverser_test.cpp.

13

Thoughts on Assignment 8
Exercise B [8/9]

If you do not want the INFO string to be printed for all tests that
follow in the test case, then you can put it, and the associated
REQUIRE, in a subcase. The INFO string will go away at the end
of the subcase.

TEST_CASE("Reverser: ranges of size 2")

{

 Reverser rr;

 SUBCASE("vector") {

 INFO("Reversing vector of size 2");

 …

 }

 SUBCASE("deque") {

 INFO("Reversing deque of size 2");

 …

 }

 …
2024-11-22 CS 311 Fall 2024

Code something like
this would go in your

test program: file
reverser_test.cpp.

14

Thoughts on Assignment 8
Exercise B [9/9]

Issues to consider when writing your test program:

▪ Does Reverser work for different data structures? std::list?
std::deque? std::vector? std::array? std::string?

▪ Does Reverser work for empty ranges? For ranges of size 1?

▪ Does Reverser work for very large ranges?

▪ Is it clear that Reverser does not modify items just before or just
after the range it is given?

▪ When a test fails, is the message printed both correct and helpful?

doctest has other features that you may wish to use: CHECK
directives, CAPTURE directives, etc. You may use these if you
wish; however, you are not required to use them.

I have provided a skeleton source file for a test program.

2024-11-22 CS 311 Fall 2024

See reverser_test.cpp.

15

Unit Overview
Tables & Priority Queues

Topics

▪ Introduction to Tables

▪ Priority Queues

▪ Binary Heap Algorithms

▪ Heaps & Priority Queues in the C++ STL

▪ 2-3 Trees

▪ Other self-balancing search trees

▪ Hash Tables

▪ Prefix Trees

▪ Tables in the C++ STL & Elsewhere

2024-11-22 CS 311 Fall 2024

16

Review

2024-11-22 CS 311 Fall 2024 17

2024-11-22 CS 311 Fall 2024

Review
Where Are We? — The Big Challenge

Our problem for most of the rest of the semester:

▪ Store: A collection of data items, all of the same type.

▪ Operations:

▪ Access items [single item: retrieve/find, all items: traverse].

▪ Add new item [insert].

▪ Eliminate existing item [delete].

▪ Time & space efficiency are desirable.

A solution to this problem is a container.

In a generic container, client code can specify the value type.

Note the three primary
single-item operations:
retrieve, insert, delete.
We will see these over &
over again.

18

2024-11-22 CS 311 Fall 2024

Review
Introduction to Tables

A Table allows for arbitrary key-based look-up.

Three single-item operations: retrieve, insert, delete by key.

A Table implementation typically holds key-value pairs.

Three ideas for improving efficiency:

1. Restricted Table → Priority Queues

2. Keep a tree balanced → Self-balancing search trees

3. Magic functions → Hash Tables

(4, Peg) (9, Ann) (12, Ed)

Inefficient ImplementationsTable

Key Value

12 Ed

04 Peg

09 Ann

(12, Ed) (4, Peg) (9, Ann)

(4, Peg) (12, Ed)

(9, Ann)

19

Unit Overview
Tables & Priority Queues

Topics

▪ Introduction to Tables

▪ Priority Queues

▪ Binary Heap Algorithms

▪ Heaps & Priority Queues in the C++ STL

▪ 2-3 Trees

▪ Other self-balancing search trees

▪ Hash Tables

▪ Prefix Trees

▪ Tables in the C++ STL & Elsewhere

2024-11-22 CS 311 Fall 2024

Idea #1: Restricted Table

Idea #2: Keep a tree balanced

Idea #3: Magic functions

Several lousy implementations

A special-purpose
implementation: “the Radix
Sort of Table implementations”

20

2024-11-22 CS 311 Fall 2024

Overview of Advanced Table Implementations

We cover the following advanced Table implementations.

▪ Self-balancing search trees

▪ To make things easier, allow more children (?):

▪ 2-3 Tree

▪ Up to 3 children

▪ 2-3-4 Tree

▪ Up to 4 children

▪ Red-Black Tree

▪ Binary Tree representation of a 2-3-4 Tree

▪ Or back up and try for a strongly balanced
Binary Search Tree again:

▪ AVL Tree

▪ Alternatively, forget about trees entirely:

▪ Hash Table

▪ Finally, “the Radix Sort of Table implementations”:

▪ Prefix Tree

Idea #2:
Keep a tree balanced

Idea #3:
Magic functions

Later, we cover
other self-balancing

search trees:
B-Trees, B+ Trees.

21

2024-11-22 CS 311 Fall 2024

Review
Hash Tables [1/5]

A Hash Table is a Table implementation that stores key-value
pairs in an unsorted array. Array indices are slots.

▪ A key’s slot is computed using a hash function.

▪ An array location can be EMPTY.

Collision: when an item gets a slot that already holds an item.
The possibility of collisions is typically an unavoidable problem;
there are often far more possible keys than slots.

Needed

▪ Hash function (typically separate from Hash Table implementation).

▪ Collision-resolution method.

Or just keys, if
there are no
associated values.

(key, val) EMPTY (key, val) (key, val) EMPTY (key, val)(key, val)

hash
function

key

slot (array index)
modulo

array size

EMPTY

hash code

22

Review
Hash Tables [2/5]

A hash function must:

▪ Take a key and return a nonnegative integer (hash code).

▪ Be deterministic: output depends only on input.
A particular key always gives the same hash code.

▪ Return the same hash code for equal (==) keys.

A good hash function:

▪ Is fast.

▪ Spreads its results evenly
over the possible output values.

▪ Turns patterns in its input into unpatterned output.

2024-11-22 CS 311 Fall 2024

Consistency
requirement

(key, val) EMPTY (key, val) (key, val) EMPTY (key, val)(key, val)

hash
function

key

EMPTY

slot (array index)
modulo

array size
hash code

hash
function

00000001

00000010

00000011

010011010010

101001111010

000101011001

23

2024-11-22 CS 311 Fall 2024

Review
Hash Tables [3/5]

Collision resolution methods, category #1: Open Hashing

▪ An array item (bucket) can store multiple key-value pairs.

▪ Buckets are virtually always Singly Linked Lists.

▪ To find a key, determine which bucket to look in based on the hash
code. Do a Sequential Search on that bucket.

Collision resolution methods, category #2: Closed Hashing

▪ An array item holds one key-value pair, or is EMPTY or DELETED.

▪ To find a key, begin at the slot given by the hash code, and probe
in a sequence of slots: the probe sequence.

EMPTY
Non-empty:
holds a stored key-value pair

DELETED

24

2024-11-22 CS 311 Fall 2024

Review
Hash Tables [4/5]

Worst-case time for all of the usual operations is linear time.

Average-case performance of a Hash Table can be analyzed based
on its load factor: α = (# of keys present) / (# of slots).

The load factor is kept small—usually well below 1.

Average-case time for retrieve and delete is constant time.

When the load factor gets too high, rehash: rebuild the Hash
Table in a larger array. So average-case time for insert is
amortized constant.

Open Hashing Closed Hashing

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 89 10 9 10

α =
#keys

#slots
=

5

12
≈ 0.42 .

11

α =
#keys

#slots
=

7

12
≈ 0.58 .

11

25

Review
Hash Tables [5/5]

Efficiency Comparison (duplicate keys not allowed)

*Priority Queue retrieve & delete are not Table operations in full generality. Only

the item with the highest priority (key) can be retrieved/deleted.

**Logarithmic if enough memory is preallocated. Otherwise, occasional reallocate-
and-copy—linear time—may be required. Time per insert, averaged over many

consecutive inserts, will be logarithmic. Thus, amortized logarithmic time (which

is not a term I expect you to know).

***Hash Table insert is constant-time only in a double average sense: averaged

both over all possible inputs and over a large number of consecutive inserts.

2024-11-22 CS 311 Fall 2024

Priority Queue

using Heap

Self-Balancing

Search Tree

Hash Table:

worst case

Hash Table:

average case

Retrieve Constant* Logarithmic Linear Constant

Insert Amortized**

logarithmic

Logarithmic Linear Amortized

constant***

Delete Logarithmic* Logarithmic Linear Constant

Idea #1 Idea #2 Idea #3

26

Review
Prefix Trees [1/2]

A Prefix Tree (a.k.a. Trie) is a Table implementation in which the
keys are strings—in a general sense, as for Radix Sort.

A Prefix Tree is a kind of tree.

▪ A node has:

▪ A Boolean—whether it represents a stored key.

▪ Child pointers—one for each possible character.

▪ The value associated with a key, if needed.

Time for operations is something like the
length of a key. So constant-time
if length is considered fixed.

Prefix Trees are not difficult to implement well!

2024-11-22 CS 311 Fall 2024

Nodes with dots represent
stored keys: dig, dog,
dot, dote, doting, eggs.

e

i

g

o

tg

e i

g

n

Prefix

Treed

g

g

s

27

Review
Prefix Trees [2/2]

A Hash Tree is a Table implementation in which hash codes are
used as keys for a Prefix Tree.

This allows some of the benefits of a Prefix Tree for a much more
general class of keys—anything hashable.

2024-11-22 CS 311 Fall 2024

(k, v)

0

0

0 0

1

11

11

Key
k

hash
function

Hash code
011

This is a toy example. In
practice, hash codes are
longer, and this tree has
greater height.

Hash

Tree

28

Tables in the C++ STL & Elsewhere

2024-11-22 CS 311 Fall 2024 29

2024-11-22 CS 311 Fall 2024

Tables in the C++ STL & Elsewhere
Overview

Now we look briefly at Table implementations as they exist in the
C++ STL and also in the broader world of programming.

▪ C++ STL
▪ Set: std::set

▪ Key-value structure: std::map

▪ Hash Table versions: std::unordered_set, std::unordered_map

▪ Tables allowing duplicate keys

▪ Other Programming Languages

▪ Perl

▪ JavaScript

▪ Python

30

2024-11-22 CS 311 Fall 2024

Tables in the C++ STL & Elsewhere
C++ STL: std::set — Introduction

The simplest STL Table implementation is std::set, in <set>.

▪ An item is simply a key; there is no associated value.

▪ Duplicate (equivalent) keys are not allowed.

▪ The spec. was written with a self-balancing search tree in mind.
Implementations will typically use a Red-Black Tree.

Declare a std::set as follows:

std::set<valuetype> s;

The comparison is specified as for std::priority_queue.

▪ Default: use operator<.

▪ Optional second template parameter: the type of the comparison.

▪ When writing the comparison as a lambda, pass the comparison
itself as a constructor argument.

31

Tables in the C++ STL & Elsewhere
C++ STL: std::set — Iterators [1/2]

std::set has bidirectional iterators. begin/end work as usual.

Items appear in sorted order; set is basically a SortedSequence.

set does not have mutable iterators. We cannot do “*iter = v;”,
and begin/end cannot be used to modify items.

Q. Why not?

A. Items are sorted. Changing an item could break this invariant.

Range-based for-loops can be used.

for (const auto & k : s)

{

 cout << "Key: " << k << endl;

}

2024-11-22 CS 311 Fall 2024 32

Tables in the C++ STL & Elsewhere
C++ STL: std::set — Iterators [2/2]

std::set iterators and references are valid until the referenced
item is destroyed.

What does this tell us about the implementation?

▪ A Red-Black tree may be reorganized by an insertion or deletion. So
iterators must not store information about the structure of the tree.

▪ But we must be able to navigate around the tree
efficiently, starting at a leaf node.

▪ So the tree must have parent pointers.

▪ An iterator can simply be a wrapper around
a pointer to a node—together with
algorithms for navigating the tree.

2024-11-22 CS 311 Fall 2024

Red-Black

 Tree

7 12

82 Iterator

4 20

18

33

2024-11-22 CS 311 Fall 2024

Tables in the C++ STL & Elsewhere
C++ STL: std::set — Operations [1/2]

Table Insert: member function insert

▪ Given an item (same as a key, for set). Inserts this into the set.

▪ Does nothing if an equivalent item (key) is already in the set.

▪ Returns pair<iterator, bool>. Iterator points to inserted item or
already present item. The bool is true if the insertion happened.

set<int> s;

auto p = s.insert(3);

if (!p.second) cout << "3 was already present";

Table Delete: member function erase

▪ Given key or iterator. Deletes the proper item, if any, from the set.

s.erase(5);

s.erase(p.first());

34

Tables in the C++ STL & Elsewhere
C++ STL: std::set — Operations [2/2]

Table Retrieve #1: member function find

▪ Given a key. Returns iterator to the item, or end() if not found.

auto iter = s.find(3);

if (iter != s.end()) cout << "3 found";

Table Retrieve #2: member function count

▪ Given a key. Returns number of times key occurs in set (0 or 1).

if (s.count(3) != 0) cout << "3 found";

Why not use std::find or std::binary_search (or a variant)?

▪ Both work!

▪ But both are Θ(n): find because it does Sequential Search,
binary_search because std::set is not random-access.

▪ However, member function find is Θ(log n) [Red-Black Tree].

2024-11-22 CS 311 Fall 2024 35

Tables in the C++ STL & Elsewhere
C++ STL: std::map — Introduction

The other main STL Table is std::map, in <map>.

▪ An item is a key along with associated data.

▪ The key type & data type are both specified.

▪ The value type is pair<const keytype, datatype>.

▪ Duplicate (equivalent) keys are not allowed.

▪ The spec. was written with a self-balancing search tree in mind.

Declare a std::map as follows:

std::map<keytype, datatype> m;

An optional comparison can be specified. The default is operator<.

Most map operations are much the same as for set.

▪ Insert: member function insert, given item.

▪ Delete: member function erase, given key or iterator.

▪ Retrieve: member function find or count, given key.

2024-11-22 CS 311 Fall 2024

STL-speak for
type of the
associated value.

For map,

these two
are different!

36

2024-11-22 CS 311 Fall 2024

Tables in the C++ STL & Elsewhere
C++ STL: std::map — Bracket Operator [1/3]

A very convenient operation: datatype & operator[](key)
This allows a map to be used like an array. Examples:

map<string, int> m;

m["abc"] = 7;

cout << m["abc"] << endl;

m["abc"] += 2;

operator[] is defined as follows (k is the given key):

(*((m.insert(make_pair(k, datatype()))).first)).second

Make sure key k is in the map, and give me the associated value.

37

2024-11-22 CS 311 Fall 2024

Tables in the C++ STL & Elsewhere
C++ STL: std::map — Bracket Operator [2/3]

More operator[] examples:

map<int, int> m2;

m2[0] = 34;

m2[123456789] = 28; // Very little memory used!

map<string, string> id;

id["Cuthbert Gump"] = "abc";

cout << id["Frederica Murg"] << endl;

// The above line inserts

// pair<string, string> ("Frederica Murg", string())

// into the map.

38

Tables in the C++ STL & Elsewhere
C++ STL: std::map — Bracket Operator [3/3]

operator[] for map is useful and convenient. However, it always
calls insert. So it has no const version.

void printAbcValue(const map<string, int> & mm)

{

 cout << mm["abc"] << "\n"; // DOES NOT COMPILE!

}

Due to the insertion, operator[] is a poor way to check whether a
key is already in the map. Use member function count.

map<Foo, Bar> m3;

Foo theKey; // We want to check whether theKey is in m3

if (m3.count(theKey) != 0) // GOOD way to check

if (m3[theKey] == …) // BAD way to check

2024-11-22 CS 311 Fall 2024 39

2024-11-22 CS 311 Fall 2024

Tables in the C++ STL & Elsewhere
C++ STL: std::map — Iterators

Iterators for map are much as for set.

▪ They are bidirectional iterators.

▪ Items appear in sorted order, by key.

▪ They are not mutable. We cannot do “*iter = v;”.

However, we can do “(*iter).second = d;”.

Q. How is this possible?

A. The value type is pair<const keytype, datatype>.

Remember that a std::map item is a key-value pair.

for (const auto & kvpair : m)

{

 cout << "Key: " << kvpair.first << " "

 << "value: " << kvpair.second << endl;

}

This is legal, but we
would normally write
iter->second = d;

40

Tables in the C++ STL & Elsewhere
C++ STL: Hash Tables

The 2011 C++ Standard added Hash Table versions of set & map:

▪ std::unordered_set, in header <unordered_set>.

▪ std::unordered_map, in header <unordered_map>.

These are very similar to set & map, respectively.

▪ Value types are identical.

▪ Member functions insert, erase, find, & count work the same.

▪ unordered_map has operator[]—which inserts.

Primary differences:

▪ Efficiency is as for a Hash Table, not a self-balancing search tree.

▪ Table traverse is not sorted—thus “unordered”.

▪ No ordering is used. A custom hash function and equality
comparison can be specified.

The interfaces were written with open hashing in mind. In
particular, iteration through a single bucket is supported. (Why?
I could not say.)

2024-11-22 CS 311 Fall 2024 41

Tables in the C++ STL & Elsewhere
C++ STL: Tables Allowing Duplicate Keys

The STL also has Tables that allow duplicate keys:

▪ std::multiset

▪ std::multimap

▪ std::unordered_multiset

▪ std::unordered_multimap

Each is declared in the same header as its non-multi version.

▪ E.g., std::multiset is declared in header <set>.

Each is similar to its non-multi version. Important differences:

▪ The count member function may return values greater than 1.

▪ multimap & unordered_multimap have no operator[].

▪ In practice, when using these containers, we might deal with a
range of items having equivalent/equal keys. Relevant member
functions include equal_range, lower_bound, upper_bound.

2024-11-22 CS 311 Fall 2024 42

2024-11-22 CS 311 Fall 2024

Tables in the C++ STL & Elsewhere
Other Programming Languages: Perl

Possibly the first major general-purpose programming language to
have built-in Tables was Perl.

A Perl Table is called a hash: Hash Table using open hashing.

One can optionally switch to a Red-Black Tree implementation.

$H{1} = "one"; # H is a hash

$H{"hi"} = "ho"; # Multiple key types are allowed

$H{"two"} = 2; # Similarly for associated values

print $H{"hi"}, "\n"; # Prints "ho"

@A = keys %H; # A: array of the keys of hash H

foreach $K (keys %H) # Loop over keys

{

 print "Key: ", $K, " data: ", $H{$K}, "\n"

}

This is Perl 5.
Perl 6 (renamed Raku)
uses different syntax.

43

2024-11-22 CS 311 Fall 2024

Tables in the C++ STL & Elsewhere
Other Programming Languages: JavaScript

The main programming language for web scripting is JavaScript.

A JavaScript object is a Hash Table. Implementations vary.

▪ Keys are strings. Numbers may be used as keys, but they are
converted to strings. Associated values may be of any type.

▪ Different associated-value types may be included in a single Table.

var ob = { 1:"one", "hi":"ho", "two":2 };

Lookup by key uses the bracket operator. When a key looks like an
identifier, the dot operator may be used.

var a = ob["two"]; // a is 2

var b = ob.two; // b is 2

var c = ob[1]; // c is "one"

var d = ob["1"]; // d is "one"

44

2024-11-22 CS 311 Fall 2024

Tables in the C++ STL & Elsewhere
Other Programming Languages: Python [1/2]

Python has several standard Table types. The main two:

▪ Dictionary: dict. Hash Table of key-value pairs.

▪ Set: set. Hash Table of keys.

dd = { 1:"one", "hi":"ho", "two":2 } # dd is a dict

x = dd[1] # x should now be "one"

if 1 in dd:

 print("1 was found")

for k in dd: # Loop over keys

 print("Key:", k, "value:", dd[k])

ss = { 34, "hello" } # ss is a set

As in Perl, different key types can be included in a single Table.

Dictionaries are used for many things in Python, including function
& member look-up, which occurs at runtime.

45

2024-11-22 CS 311 Fall 2024

Tables in the C++ STL & Elsewhere
Other Programming Languages: Python [2/2]

Several Python implementations exist. The standard: CPython.

▪ CPython built-in Hash Tables use closed hashing.

▪ The array size is a power of 2. The load factor is kept under 2/3.

▪ The probe sequence is illustrated by the following C code.

size_t hash_code, array_size; // Hash code, # of slots

size_t perturb = hash_code;

size_t i = hash_code % array_size; // A slot number

while (probe(i)) // Probe @ i; true: different key found

{

 i = (5*i + perturb + 1) % array_size;

 perturb /= 32;

}

// Now i is the slot where the key is (to be) stored.

Simplified version of part of the source code
for CPython 3.14.0a2, file dictobject.c.

46

	Slide 1: Thoughts on Assignment 8 Tables in the C++ STL & Elsewhere
	Slide 2
	Slide 3: Thoughts on Assignment 8 Overview
	Slide 4: Thoughts on Assignment 8 Exercise A [1/3]
	Slide 5: Thoughts on Assignment 8 Exercise A [2/3]
	Slide 6: Thoughts on Assignment 8 Exercise A [3/3]
	Slide 7: Thoughts on Assignment 8 Exercise B [1/9]
	Slide 8: Thoughts on Assignment 8 Exercise B [2/9]
	Slide 9: Thoughts on Assignment 8 Exercise B [3/9]
	Slide 10: Thoughts on Assignment 8 Exercise B [4/9]
	Slide 11: Thoughts on Assignment 8 Exercise B [5/9]
	Slide 12: Thoughts on Assignment 8 Exercise B [6/9]
	Slide 13: Thoughts on Assignment 8 Exercise B [7/9]
	Slide 14: Thoughts on Assignment 8 Exercise B [8/9]
	Slide 15: Thoughts on Assignment 8 Exercise B [9/9]
	Slide 16: Unit Overview Tables & Priority Queues
	Slide 17
	Slide 18: Review Where Are We? — The Big Challenge
	Slide 19: Review Introduction to Tables
	Slide 20: Unit Overview Tables & Priority Queues
	Slide 21: Overview of Advanced Table Implementations
	Slide 22: Review Hash Tables [1/5]
	Slide 23: Review Hash Tables [2/5]
	Slide 24: Review Hash Tables [3/5]
	Slide 25: Review Hash Tables [4/5]
	Slide 26: Review Hash Tables [5/5]
	Slide 27: Review Prefix Trees [1/2]
	Slide 28: Review Prefix Trees [2/2]
	Slide 29
	Slide 30: Tables in the C++ STL & Elsewhere Overview
	Slide 31: Tables in the C++ STL & Elsewhere C++ STL: std::set — Introduction
	Slide 32: Tables in the C++ STL & Elsewhere C++ STL: std::set — Iterators [1/2]
	Slide 33: Tables in the C++ STL & Elsewhere C++ STL: std::set — Iterators [2/2]
	Slide 34: Tables in the C++ STL & Elsewhere C++ STL: std::set — Operations [1/2]
	Slide 35: Tables in the C++ STL & Elsewhere C++ STL: std::set — Operations [2/2]
	Slide 36: Tables in the C++ STL & Elsewhere C++ STL: std::map — Introduction
	Slide 37: Tables in the C++ STL & Elsewhere C++ STL: std::map — Bracket Operator [1/3]
	Slide 38: Tables in the C++ STL & Elsewhere C++ STL: std::map — Bracket Operator [2/3]
	Slide 39: Tables in the C++ STL & Elsewhere C++ STL: std::map — Bracket Operator [3/3]
	Slide 40: Tables in the C++ STL & Elsewhere C++ STL: std::map — Iterators
	Slide 41: Tables in the C++ STL & Elsewhere C++ STL: Hash Tables
	Slide 42: Tables in the C++ STL & Elsewhere C++ STL: Tables Allowing Duplicate Keys
	Slide 43: Tables in the C++ STL & Elsewhere Other Programming Languages: Perl
	Slide 44: Tables in the C++ STL & Elsewhere Other Programming Languages: JavaScript
	Slide 45: Tables in the C++ STL & Elsewhere Other Programming Languages: Python [1/2]
	Slide 46: Tables in the C++ STL & Elsewhere Other Programming Languages: Python [2/2]

