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Unit Overview
Tables & Priority Queues

Topics

▪ Introduction to Tables

▪ Priority Queues

▪ Binary Heap Algorithms

▪ Heaps & Priority Queues in the C++ STL

▪ 2-3 Trees

▪ Other self-balancing search trees

▪ Hash Tables

▪ Prefix Trees

▪ Tables in the C++ STL & Elsewhere
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Review
Where Are We? — The Big Challenge

Our problem for most of the rest of the semester:

▪ Store: A collection of data items, all of the same type.

▪ Operations:

▪ Access items [single item: retrieve/find, all items: traverse].

▪ Add new item [insert].

▪ Eliminate existing item [delete].

▪ Time & space efficiency are desirable.

A solution to this problem is a container.

In a generic container, client code can specify the value type.

Note the three primary 
single-item operations: 
retrieve, insert, delete. 
We will see these over & 
over again.
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Review
Introduction to Tables

A Table allows for arbitrary key-based look-up.

Three single-item operations: retrieve, insert, delete by key.

A Table implementation typically holds key-value pairs.

Three ideas for improving efficiency:

1. Restricted Table →  Priority Queues

2. Keep a tree balanced →  Self-balancing search trees

3. Magic functions →  Hash Tables

(4, Peg) (9, Ann) (12, Ed)

Inefficient ImplementationsTable

Key Value

12 Ed

04 Peg

09 Ann

(12, Ed) (4, Peg) (9, Ann)

(4, Peg) (12, Ed)

(9, Ann)
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Idea #1: Restricted Table

Idea #2: Keep a tree balanced

Idea #3: Magic functions

Several lousy implementations

A special-purpose 
implementation: “the Radix 
Sort of Table implementations”
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Overview of Advanced Table Implementations

We cover the following advanced Table implementations.

▪ Self-balancing search trees

▪ To make things easier, allow more children (?):

▪ 2-3 Tree

▪ Up to 3 children

▪ 2-3-4 Tree

▪ Up to 4 children

▪ Red-Black Tree

▪ Binary Tree representation of a 2-3-4 Tree

▪ Or back up and try for a strongly balanced
Binary Search Tree again:

▪ AVL Tree

▪ Alternatively, forget about trees entirely:

▪ Hash Table

▪ Finally, “the Radix Sort of Table implementations”:

▪ Prefix Tree

Idea #2:
Keep a tree balanced

Idea #3:
Magic functions

Later, we cover 
other self-balancing 

search trees:
B-Trees, B+ Trees.
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Review
2-3 Trees, Other Self-Balancing Search Trees [1/5]

We looked at four kinds of self-balancing search trees:
2-3 Trees, 2-3-4 Trees, Red-Black Trees, and AVL Trees.

All of these have:

▪ Θ(log n) retrieve, insert, & delete.

▪ Θ(n) traverse (sorted).

2-3 Tree: 2-nodes & 3-nodes.
Every node has max number
of children or no children.
All leaves at the same level.

2-3-4 Tree

2-3-4 Tree: exactly like a 2-3 
Tree, except that 4-nodes 
are also allowed.

20

324 7 12

8 18 3523 2851 2 3

2-3 Tree20

324 12

8 18 3523 281 2

8



2024-11-18 CS 311 Fall 2024

Review
2-3 Trees, Other Self-Balancing Search Trees [2/5]

Red-Black Tree: Binary Search Tree representation of 2-3-4 Tree.

▪ Each node in a Red-Black Tree is either red or black.

▪ Each black node corresponds to a 2-3-4 Tree node.

▪ Red nodes are extras needed since each node holds only one item.

A Red-Black Tree may not be strongly balanced. However, each 
path from the root to a leaf hits the same number of black 
nodes, and no more than one red node for each black node. 
As a result, Red-Black Trees have logarithmic height.

2-3-4 Tree Corresponding 

Red-Black Tree

20

5 15

3 9 14 19

7

22 25

2412

19

5 12 15

3 147 9 2522

24

20

We do this conversion only in 
our heads. It shows where 
the idea of a Red-Black Tree 
came from.
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Review
2-3 Trees, Other Self-Balancing Search Trees [3/5]

AVL Tree: strongly balanced Binary Search Tree in which each 
node holds its balance: left-high, right-high, or even.

This was the first kind of self-balancing search tree to be 
developed.

40 ←

50 =20 =

10 = 30 =

Item

Node’s 
balance

AVL Tree
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Review
2-3 Trees, Other Self-Balancing Search Trees [4/5]

Summary of Ideas Behind the Algorithms

Retrieve & (Sorted) Traverse

▪ For Red-Black Trees & AVL Trees, use the Binary Search Tree 
algorithms (traverse = inorder traverse).

▪ For 2-3 Trees & 2-3-4 Trees, use straightforward generalizations of 
Binary Search Tree algorithms.

Insert & Delete

▪ We covered the 2-3 Tree insert & delete
algorithms in detail.

▪ The 2-3-4 Tree algorithms are similar,
generally requiring fewer operations
(there are typically fewer nodes).

▪ Algorithms for Red-Black Trees and AVL Trees use rotations.

d

b

A

C E

d

Eb

A C

Example 

Rotation
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Review
2-3 Trees, Other Self-Balancing Search Trees [5/5]

Generally, the Red-Black Tree is agreed to have the best overall 
performance, for in-memory datasets with many insert & delete 
operations, when worst-case performance is important.

A Red-Black Tree, or some variant, is the usual implementation for 
std::map, std::set, and similar STL containers.

AVL Trees are used less often, but they do have their niche.

2-3 Trees and 2-3-4 Trees are fine data structures. However, they 
are basically never used, since, in all use cases, some other data 
structure is a better choice.

We covered 2-3 Trees and 2-3-4 Trees in order to give an idea of 
where Red-Black Trees* came from and what they are like, 
without having to cover all the details.

*Also B-Trees & B+ Trees, when we get to them.
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Hash Tables
Background [1/4]

Self-balancing search trees allow the primary single-item Table 
operations—retrieve, insert, and delete by key—to be Θ(log n).

Recall idea #3 for designing an efficient structure to hold an 
associative dataset: magic functions.

Let’s see what it leads to …

Is there an even 

more efficient Table 
implementation?

It depends on what 

you mean by
“more efficient”.
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Hash Tables
Background [2/4]

Consider a Table stored as an unsorted array of key-value pairs.

▪ Delete by index can be very fast, if we allow gaps in the data.

▪ To delete an item at a given index, just mark it EMPTY. Constant time.

▪ But to do Table delete—by key—we must first search by key.

▪ Insert by key would appear to be fast, if we allow duplicate keys.

▪ Constant time if no reallocation; generally, amortized constant time.

▪ But if our dataset does not allow for duplicate keys, then insert 
requires search by key, to find any existing duplicate key.

▪ And of course retrieve (by key) requires doing a search by key.

▪ Unfortunately, search by key is slow. We would use Sequential 
Search: Θ(n)—or worse, due to the EMPTY spots.

So speeding up search by key might make everything fast.

(key, val) (key, val) (key, val) (key, val)(key, val) (key, val)EMPTY(key, val) (key, val)EMPTY EMPTY
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Hash Tables
Background [3/4]

What if we had a magic function that, given a key, returned the 
index at which the key is stored?

Then all three primary Table operations—retrieve, insert, and 
delete by key—would be (amortized?) constant time!

Alas, such a function is generally impractical. In common use-
cases, it is often actually impossible. (What if there are more 
possible keys than array locations?)

But we can often find a function that is almost what we want.

(key, val) EMPTY (key, val) (key, val) EMPTY (key, val)(key, val)

functionkey

EMPTY

index
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Hash Tables
Background [4/4]

So, how do we find a magic almost-perfect-key-finder function?

[Insert high-quality dramatic production here]

Conclusion: we do not need magic, only consistency. For a 
particular key, the function must always output the same index. 
The reason the function “knows” where to find an item, is that 
we asked it where to put the item, when it was inserted.

Data structures based on this idea are called Hash Tables.

(key, val) EMPTY (key, val) (key, val) EMPTY (key, val)(key, val)

indexfunctionkey

EMPTY
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Hash Tables
Definitions [1/2]

A hash function is a function that “wants to be” our perfect key 
finder. It takes a key and returns a number: the hash code.

▪ When we pass a key to a hash function, we are hashing the key.

▪ Typically, the function messes up its input, so that the output bears 
little resemblance to the given key. Thus: hash.

A Hash Table is a data structure in which each item is stored in a 
location based on a hash code.

▪ The structure is something like an array of key-value pairs (or just 
keys). Each array index is called a slot.

▪ The hash code may be (much) larger than the size of the array. The 
slot is typically computed as hash_code % array_size.

(key, val) EMPTY (key, val) (key, val) EMPTY (key, val)(key, val)

hash
function

key

slot (array index)
modulo 

array size

EMPTY

hash code
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Hash Tables
Definitions [2/2]

The big problem with Hash Tables: the number of possible keys is 
usually larger than the number of slots. So there will be distinct 
keys that would get the same slot if they were inserted.

▪ Key sets are often very large. Consider 20-character strings with 
printable ASCII characters. There are ~3.6 × 1039 such strings.

A collision happens when an item gets a slot that already holds an 
item. Dealing with this is called collision resolution.

Four issues when putting together a Hash Table:

▪ What function is used as the hash function?

▪ How is collision resolution done?

▪ What if the dataset outgrows the array?

▪ How efficient is the resulting data structure?

We look at each of these in turn.
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Hash Tables
Hash Functions — Properties [1/2]

A hash function must:

▪ Take a key and return a nonnegative integer (hash code).

▪ Be deterministic: output depends only on input.
A particular key always gives the same hash code.

▪ Return the same hash code for equal (==) keys.

A good hash function:

▪ Is fast.

▪ Spreads its results evenly
over the possible output values.

▪ Turns patterns in its input into unpatterned output.

2024-11-18 CS 311 Fall 2024

Consistency 
requirement 
mentioned 
previously

(key, val) EMPTY (key, val) (key, val) EMPTY (key, val)(key, val)

hash
function

key

EMPTY

slot (array index)
modulo 

array size

hash
function

00000001

00000010

00000011

010011010010

101001110110

000101011001

hash code
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Hash Tables
Hash Functions — Properties [2/2]

The hash function is typically separate from the Hash Table 
implementation.

▪ It may be specified by the client code, when the key type is 
specified.

▪ It is possible to design a good hash function without knowing a 
great deal about the Hash Table implementation.

However, the Hash Table implementation will place some 
requirements on the hash function:

▪ How it is called.

▪ What it returns.

▪ These days, a hash code is typically a 32-bit or 64-bit unsigned integer.

▪ How exactly the client code specifies a custom hash function.

▪ Template/ctor parameters, specially named member functions, etc.

▪ Usually, a hash function and an equality comparison are both given.

2024-11-18 CS 311 Fall 2024 21



Hash Tables
Hash Functions — In Practice [1/4]

A Hash Table implementation typically comes with hash functions 
for common key types.

▪ The C++ Standard Library has hash functions for int, bool, char, 
double, std::string, std::shared_ptr, and other types.

But not all possible key types!

There is no way to generate hash functions automatically 
for all possible key types.

So if you provide your own type for the
keys, then you also provide a hash
function and an equality comparison.

This issue does not apply to client-provided types used as 
associated values. Only the key needs to be hashed.

2024-11-18 CS 311 Fall 2024

Puzzle

1. Come up with an idea for 
generating hash functions 
automatically.

2. Figure out why your idea will 
not work for some key types.
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Hash Tables
Hash Functions — In Practice [2/4]

Hash functions for standard types are typically accessible by 
applications. So, for example, if you need to hash a type that is 
a wrapper around an int, then you can easily write your own 
hash function that calls the standard hash function for int.

In all cases, while you might write a hash function yourself, you 
probably should not design the technique it uses. Designing a 
good general-purpose hash function requires some expertise 
and a lot of time. Designing a hash function that is better than 
those already known is a huge challenge.

There are a number of top-notch hash functions to be found on the 
net. If you need a custom hash function, then do a little 
research, grab an implementation, and use it!
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Hash Tables
Hash Functions — In Practice [3/4]

Here is a hash function using a variant of MurmurHash [Austin 
Appleby 2008]. Keys & hashcodes are 32-bit unsigned integers.

uint32_t hash(uint32_t key)             // Based on MurmurHash3

{

    const uint32_t salt = 0xdeadbeefU;  // Value chosen by GGC

    uint32_t h = key * 0xcc9e2d51U;

h = (h << 15) | (h >> 17);

h *= 0x1b873593U;

h ^= salt;

h = (h << 13) | (h >> 19);

h = (h * 5) + 0xe6546b64U;

h ^= 4 ^ (h >> 16);

h *= 0x85ebca6bU;

h ^= h >> 13;

h *= 0xc2b2ae35U;

return h ^ (h >> 16);

}

See hash_function.cpp for 

a program demonstrating 
this function.
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Hash Tables
Hash Functions — In Practice [4/4]

However, the true measure of a good hash function is the resulting 
application performance in actual practice.

For example, you may find that the performance of your 
application is significantly improved if you switch from the hash 
function on the previous slide to the following.

uint32_t hash(uint32_t key)

{

    return key;

}

And if that really is the case—as verified by thorough testing—then 
you may use this hash function without embarrassment.

2024-11-18 CS 311 Fall 2024 25
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Hash Tables
Collision Resolution — Overview [1/2]

Collision: when an item gets a slot that already holds an item.

Generally:

▪ For a well designed hash function, collisions are relatively rare for 
average data.

▪ But we typically cannot guarantee that there will be few collisions.

▪ In fact, it is possible that every item we insert will be assigned the 
same index in the array. (Ick!)

Regardless, in a Hash Table that allows arbitrary insertions, we 
must have a way to deal with collisions.
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Hash Tables
Collision Resolution — Overview [2/2]

Collision-resolution methods come in two categories.

Open Hashing

▪ In each slot is a data structure that can store multiple data items.

▪ Each such data structure is called a bucket.

Closed Hashing

▪ In each slot there is at most one data item.

▪ If we get a collision, then we look for another slot.

How collisions are resolved is the primary design decision 
involved in a Hash Table implementation.
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Hash Tables
Collision Resolution — Open Hashing

In open hashing:

▪ In each slot is a data structure that can store multiple data items.

▪ Each such data structure is called a bucket.

▪ A search always stays within a single bucket.

If there is a collision:

▪ Insert a new item in the proper bucket.

Buckets are virtually always Singly Linked Lists.

To search for a key: do a Sequential Search in its bucket.
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Hash Tables
Collision Resolution — Closed Hashing [1/4]

In closed hashing:

▪ In each slot there is at most one data item.

▪ So the Hash Table is basically an array of data items. However …

▪ Each slot can be marked as EMPTY.

If there is a collision:

▪ We are inserting a new item, but the slot we want to store it in is 
already used by an item with a different key.

▪ So we find a different slot to store the new item in. We keep looking 
until an empty slot is found.

(key, val) EMPTY (key, val) (key, val) EMPTY (key, val)(key, val) EMPTY
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Hash Tables
Collision Resolution — Closed Hashing [2/4]

Looking for a given key, or a slot to store a new key, is a search.

When doing a search, we check a sequence of slots.

▪ The first is the slot computed from the hash code.

▪ Each time we check a slot, we are doing a probe.

▪ The sequence of slots to check is called the probe sequence.

The simplest probe sequence is the one in which we look at slot t, 
then t+1, t+2, t+3, etc., wrapping around when we reach the 
end of the array. This is linear probing.

Linear probing tends to form clusters, which slow down searches.

EMPTY

Cluster

Non-empty:
holds a stored key-value pair
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Hash Tables
Collision Resolution — Closed Hashing [3/4]

To avoid clusters, we can use quadratic probing, which has the 
probe sequence t, t+12, t+22, t+32, etc.

Some techniques involve using a secondary hash function when a 
collision occurs.

▪ These generally go under the name of double hashing.

▪ For example, do a variation of linear probing with a step size other 
than 1. The step size is given by the second hash function.

▪ Or, just use the second hash function to give a second slot, after 
which one of the simpler probe sequences is used.
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Hash Tables
Collision Resolution — Closed Hashing [4/4]

Trickiness in closed hashing: how to be sure a key is not present?

In above Hash Table, retrieve 7 (not present). Use linear probing.

▪ Begin at arrow, look until we find an EMPTY. Return NOT FOUND.

Now insert 7 and then delete 1.

Again, retrieve 7. The above strategy gives NOT FOUND. 

Solution. Allow DELETED marks. Stop only on key found or EMPTY.

2024-11-18 CS 311 Fall 2024

1

7

EMPTY
Non-empty:
holds a stored key-value pair

DELETED

7

Slot for 7, from hash function
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Hash Tables
Rehashing

All Hash Table implementations that allow insertion will suffer poor 
performance when the data structure gets too full.

Q. What do we do about this?

A. When the number of items gets too high, we remake the Hash 
Table, doing a reallocate-and-copy to a larger array—as we did 
with resizable smart arrays. This is called rehashing.

Rehashing is time-consuming. We need to traverse the entire Hash 
Table, calling the hash function for every key present.

This is one of the downsides of Hash Tables.

Two Questions

1. How do we decide when to do rehashing?

2. How does periodic rehashing affect Hash Table performance?

We look at these after discussing basic Hash Table efficiency.
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Hash Tables
TO BE CONTINUED …

Hash Tables will be continued next time.
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