
2-3 Trees
Other Self-Balancing Search Trees

CS 311 Data Structures and Algorithms

Lecture Slides

Friday, November 15, 2024

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2005–2024 Glenn G. Chappell

Some material contributed by Chris Hartman

continued

Unit Overview
Tables & Priority Queues

Topics

▪ Introduction to Tables

▪ Priority Queues

▪ Binary Heap Algorithms

▪ Heaps & Priority Queues in the C++ STL

▪ 2-3 Trees

▪ Other self-balancing search trees

▪ Hash Tables

▪ Prefix Trees

▪ Tables in the C++ STL & Elsewhere

2024-11-15 CS 311 Fall 2024

(part)

2

Review

2024-11-15 CS 311 Fall 2024 3

2024-11-15 CS 311 Fall 2024

Review
Where Are We? — The Big Challenge

Our problem for most of the rest of the semester:

▪ Store: A collection of data items, all of the same type.

▪ Operations:

▪ Access items [single item: retrieve/find, all items: traverse].

▪ Add new item [insert].

▪ Eliminate existing item [delete].

▪ Time & space efficiency are desirable.

A solution to this problem is a container.

In a generic container, client code can specify the value type.

Note the three primary
single-item operations:
retrieve, insert, delete.
We will see these over &
over again.

4

2024-11-15 CS 311 Fall 2024

Review
Introduction to Tables

A Table allows for arbitrary key-based look-up.

Three single-item operations: retrieve, insert, delete by key.

A Table implementation typically holds key-value pairs.

Three ideas for improving efficiency:

1. Restricted Table → Priority Queues

2. Keep a tree balanced → Self-balancing search trees

3. Magic functions → Hash Tables

(4, Peg) (9, Ann) (12, Ed)

Inefficient ImplementationsTable

Key Value

12 Ed

04 Peg

09 Ann

(12, Ed) (4, Peg) (9, Ann)

(4, Peg) (12, Ed)

(9, Ann)

5

Unit Overview
Tables & Priority Queues

Topics

▪ Introduction to Tables

▪ Priority Queues

▪ Binary Heap Algorithms

▪ Heaps & Priority Queues in the C++ STL

▪ 2-3 Trees

▪ Other self-balancing search trees

▪ Hash Tables

▪ Prefix Trees

▪ Tables in the C++ STL & Elsewhere

2024-11-15 CS 311 Fall 2024

Idea #1: Restricted Table

Idea #2: Keep a tree balanced

Idea #3: Magic functions

Several lousy implementations

A special-purpose
implementation: “the Radix
Sort of Table implementations”

(part)

6

2024-11-15 CS 311 Fall 2024

Overview of Advanced Table Implementations

We cover the following advanced Table implementations.

▪ Self-balancing search trees

▪ To make things easier, allow more children (?):

▪ 2-3 Tree

▪ Up to 3 children

▪ 2-3-4 Tree

▪ Up to 4 children

▪ Red-Black Tree

▪ Binary Tree representation of a 2-3-4 Tree

▪ Or back up and try for a strongly balanced
Binary Search Tree again:

▪ AVL Tree

▪ Alternatively, forget about trees entirely:

▪ Hash Table

▪ Finally, “the Radix Sort of Table implementations”:

▪ Prefix Tree

Idea #2:
Keep a tree balanced

Idea #3:
Magic functions

Later, we cover
other self-balancing

search trees:
B-Trees, B+ Trees.

(part)

7

2024-11-15 CS 311 Fall 2024

Review
2-3 Trees [1/5]

A Binary-Search-Tree style node is
a 2-node.

▪ A node with 2 subtrees & 1 key.

▪ The key lies between the keys in
the two subtrees.

In a 2-3 Tree we also allow a node
to be a 3-node.

▪ A node with 3 subtrees & 2 keys.

▪ Each of the 2 keys lies between
the keys in the corresponding
pair of consecutive subtrees.

Later, we will look at 2-3-4 Trees,
which can also have 4-nodes.

2-node

10

·≤10 10≤·

3 9

3-node

3≤·≤9 9≤··≤3

2 5

4-node

5≤·≤7 7≤··≤2

7

2≤·≤5

2 subtrees
1 key
ordering

3 subtrees
2 keys
ordering

4 subtrees
3 keys
ordering

Like a Binary-
Search-Tree
node

8

2024-11-15 CS 311 Fall 2024

Review
2-3 Trees [2/5]

A 2-3 Search Tree (generally just 2-3 Tree) is a tree with the
following properties [John Hopcroft 1970].

▪ Each node is either a 2-node or a 3-node.
The associated order properties hold.

▪ Each node either has its full complement
of children, or else is a leaf.

▪ All leaves lie in the same level.

To traverse in a 2-3 Tree:

▪ Use the appropriate generalization of inorder traversal.

▪ Items are visited in sorted order.

To retrieve by key in a 2-3 Tree:

▪ Begin at the root and go down, using the order properties, until
either the key is found, or it is clearly not in the tree.

8 18

20

32

352 4

7 12

23 28

9

Review
2-3 Trees [3/5]

To insert in a 2-3 Tree:

▪ Find the leaf that the new item should go in.

▪ If it fits, then simply put it in that node.

▪ Otherwise, there is an over-full node (shown in blue). Split it, and
move the middle item up. Either recursively insert this item in the
parent, or else create a new root, if there is no parent.

2024-11-15 CS 311 Fall 2024

8183 4

7 12

18

7 12

8 2 3 4 8 18

3 7 12

2 4 8 182 4

123

7

182 4

7 12

818

7 12

84

2

2

10

2024-11-15 CS 311 Fall 2024

Review
2-3 Trees [4/5] (Try It!)

Do insert 20 in the following 2-3 Tree. Draw the resulting tree.

Answer on next slide.

10 15

30

40 45

11

2024-11-15 CS 311 Fall 2024

Review
2-3 Trees [5/5] (Try It!)

Do insert 20 in the following 2-3 Tree. Draw the resulting tree.

Answer

10 15

30

40 45

10 15

30

40 45

20
30

40 4510 1520 10 20 40 45

15 30

12

2-3 Trees

2024-11-15 CS 311 Fall 2024

continued

13

2-3 Trees
Delete Algorithm [1/10]

Deleting from a 2-3 Tree is similar to inserting, but a bit more
complicated.

▪ As with inserting, we search, start at a leaf, and work our way up.

▪ Simply delete from a leaf, if possible.

▪ If that does not work, then do a rotation, if possible.

▪ If neither works, then bring an item from the parent down. This is like

“deleting” from the parent. Recursively apply the delete procedure to the
parent, dragging subtrees along as appropriate. If we end up “deleting”

the root, then the height of the tree goes down by one.

I call these three easy case, semi-easy case, and hard case,
respectively.

2024-11-15 CS 311 Fall 2024 14

2-3 Trees
Delete Algorithm [2/10]

Observation. We can always start our deletion at a leaf.

If the item to be deleted is not in a leaf, then swap it with its
successor in the sorted traversal order.

▪ It must have a successor, which must be a leaf. (Why?)

This swap operation comes before the
recursive deletion procedure.

Easy Case

▪ If the leaf containing the item to
be deleted has another item
in it, then just delete
the item.

2024-11-15 CS 311 Fall 2024

18

20

25

2 4

7 12

8 28 3523

18

20

28

2 4

7 12

8 25 3523 182 4

7 12

8

20

28

23 35

Example 1. Delete 25.

15

2024-11-15 CS 311 Fall 2024

2-3 Trees
Delete Algorithm [3/10]

Semi-Easy Case

▪ If the item to be deleted is in a node that contains no other item—
and if, next to this node, there is a sibling that contains 2 items, we
can perform a rotation using the parent:

▪ Bring an item up from the nearby sibling.

▪ Bring the parent down.

▪ Drag along subtrees as appropriate.

Example 2. Delete 8.

18

20

25

2 4

7 12

8 28 3523 18

20

254 12

7 28 35232

16

2024-11-15 CS 311 Fall 2024

2-3 Trees
Delete Algorithm [4/10]

Hard Case

▪ If the item to be deleted is in a node with no other item, and there
are no nearby 2-item siblings, then we bring down an item from the
parent and place it in a nearby sibling node.

▪ Bringing down an item requires recursively applying the delete
procedure on the next level up, dragging subtrees along as needed.

Example 3. Delete 7.

Above, “delete” 4 from the tree consisting of the top two levels. 4’s

node has another item in it, so this is easy case; simply get rid
of 4 in the parent (one level down, it goes in the node with 2).

18

20

254 12

7 28 35232 18

20

25

28 35232 4

12

17

2-3 Trees
Delete Algorithm [5/10]

In a recursive “delete”, where do orphaned subtrees go?

In each example, we “delete” 40. One of its subtrees is going
away, and it is moving down.

Two hard case examples.

▪ Q. What happens to
other subtree of 40?

▪ A. Make it a subtree of
the item we bring down.

A semi-easy case example.

▪ 30 comes down to
replace 40. 20 goes up.

▪ Q. What to do with the
right subtree of 20?

▪ A. Make it the left subtree of 30.

2024-11-15 CS 311 Fall 2024

6020 30

50

20

10 30

30

20 40

30 50

20 40 60 60

50

4010 20

30 20

10 ?

?

?

?

?

?

20 30

20 30

30

There is always exactly one spot for
an orphaned subtree. Put it there.

20 30

18

2-3 Trees
Delete Algorithm [6/10]

2-3 Tree Delete Algorithm (outline)

▪ Find the node holding the given key.

▪ If it turns out that the given key is not in the tree, then act accordingly.

▪ If the above node is not a leaf, then swap its item with its successor
in the traversal ordering. Continue with the deletion procedure:
delete the given key from its new (leaf) node.

▪ 3 Cases

▪ Easy Case (item shares a node with another item). Delete item. Done.

▪ Semi-Easy Case (otherwise: item has a consecutive sibling holding 2

items). Do rotation: sibling item up, parent down, to replace the item to
be deleted. Done.

▪ Hard Case (otherwise). Eliminate the node holding the item, and move

item from the parent down, adding it to consecutive sibling node. If the
parent is the root, then reduce the height of the tree. Otherwise,

eliminate the item from the parent by recursively applying the deletion
procedure—dragging subtrees along.

2024-11-15 CS 311 Fall 2024 19

2024-11-15 CS 311 Fall 2024

2-3 Trees
Delete Algorithm [7/10]

A few more examples.

Example 4. Delete 1.

▪ 1 is hard case, so we bring down the parent (recursively “delete” 2)
and join it with 3 in a single node.

▪ 2 is semi-easy case, so rotate (6 to 4 to 2).

▪ The 5 node is orphaned. Make it the right child of the 4 node.

9

4

2 6 8

71 5 5

6

8

72 3

4

3 9 5

6

8

72 3

4

9

?

?

20

2024-11-15 CS 311 Fall 2024

2-3 Trees
Delete Algorithm [8/10]

Example 5. Delete 2.

▪ 2 is easy case.

Example 6. Delete 3.

▪ 3 is hard case. We need to bring down 4 and join it with 5.

▪ 4 is hard case. We need to bring down 6 and join it with 8.

▪ 6 is the root. Reduce the height of the tree.

▪ The 4-5 node is orphaned. Make it the left child of the new root.

5

6

8

72 3

4

9 5

6

8

7

4

93

5

6

8

7

4

93

6 8

4 5 7 9

6 8

4 5 7 9

?

?

21

2024-11-15 CS 311 Fall 2024

2-3 Trees
Delete Algorithm [9/10] (Try It!)

Do delete 20 in the following 2-3 Tree. Draw the resulting tree.

Answer on next slide.

50 7010 30

6020

40

22

2024-11-15 CS 311 Fall 2024

2-3 Trees
Delete Algorithm [10/10] (Try It!)

Do delete 20 in the following 2-3 Tree. Draw the resulting tree.

Answer

50 7010 30

6020

40

50 7010 20

6030

40

50 7010 30

40 60?

? 50 7010 30

40 60

50 7010 30

6020

40

23

2024-11-15 CS 311 Fall 2024

2-3 Trees
Efficiency

Fact. A 2-3 Tree with n keys must have height less than
log2(n + 1). So the maximum height, given n, is Θ(log n).

And each single-item operation follows a single root-leaf path.

What is the order of the following 2-3 Tree operations?

▪ Traverse

▪ Θ(n) [as usual].

▪ Retrieve

▪ Θ(log n).

▪ Insert

▪ Θ(log n).

▪ Delete

▪ Θ(log n).

This is what we are looking for.

A 2-3 Tree is a good basis for an implementation of a Table.

This is the first time we have seen a
delete-by-key that handles an arbitrary
key and is faster than linear time.

This is the first time we have seen an
insert-by-key that handles an arbitrary
key and is faster than linear time even
if we disallow multiple equivalent keys.

24

2024-11-15 CS 311 Fall 2024

2-3 Trees
In Practice

Q. When are 2-3 Trees used in practice?

A. Pretty much never.

When we consider how to implement a Table, a 2-3 Tree is a good
choice. But it is never quite the best choice. In every situation,
there is some other implementation that is at least a bit better.

Q. Why, then, are we studying 2-3 Trees in such detail?

A. Some of the self-balancing search trees that are actually used in
Table implementations are based on 2-3 Trees, but have added
complexity. Studying 2-3 Trees helps us understand them.

We will not study these other self-balancing search trees in detail.
Rather, we will note that they are just like 2-3 Trees, except …

25

Other Self-Balancing Search Trees

2024-11-15 CS 311 Fall 2024 26

Other Self-Balancing Search Trees
Overview

A 2-3 Tree is a kind of self-balancing search tree. There are
many other kinds.

These are mostly not strongly balanced Binary Search Trees, but
most of them do place limits on height in a way that allows for
retrieve, insert, and delete to be logarithmic-time operations.

We look briefly at the following self-balancing search trees, all of
which have Θ(log n) retrieve, insert, and delete.

▪ 2-3-4 Trees

▪ Very much like 2-3 Trees, but allowing 4-nodes.

▪ Red-Black Trees

▪ Binary Search Tree representation of a 2-3-4 Tree. Not strongly

balanced. Each node also holds a Boolean value.

▪ AVL Trees

▪ Actual strongly balanced Binary Search Trees, but with a bit of extra

data in each node, telling which subtree has greater height.

2024-11-15 CS 311 Fall 2024 27

2024-11-15 CS 311 Fall 2024

Other Self-Balancing Search Trees
2-3-4 Trees

Suppose we generalize a 2-3 Tree slightly, by allowing 4-nodes.
The result is a 2-3-4 Search Tree (generally just 2-3-4 Tree)
[Rudolf Bayer 1972].

In all other ways, the definition of a 2-3-4 Tree is exactly like that
of a 2-3 Tree.

Insert & delete algorithms for 2-3-4 Trees are very similar to those
for 2-3 Trees.

They tend to be just a little faster, on average.

18

21

32

3523 28

6 9 17

81 2 4 10 11 15

28

2024-11-15 CS 311 Fall 2024

Other Self-Balancing Search Trees
Red-Black Trees — Idea [1/3]

We can increase the efficiency of 2-3-4 Tree operations by
representing the tree using a Binary Search Tree plus a little
more information. The result is a Red-Black Tree [Leonidas J.
Guibas & Robert Sedgewick 1978].

Consider the 4-node on the left, below. We can represent this part
of the 2-3-4 Tree using only 2-nodes if we add two new nodes
(shown in red).

The ordering property of the 2-3-4 Tree translates into the
ordering property of a Binary Search Tree.

18

4 7 12

2 5 8

7

4 12

2 5 8 18

29

2024-11-15 CS 311 Fall 2024

Other Self-Balancing Search Trees
Red-Black Trees — Idea [2/3]

Here again is our transformed 4-node.

We can also apply this process to a 3-node—in two different ways.

2-nodes are essentially left alone.

18

4 7 12

2 5

7

4 12

2 5 8 188

4 7

2 5

7

4

2 5

8
8

4

7

5 8

2
or

2 5

4

2 5

4

30

2024-11-15 CS 311 Fall 2024

Other Self-Balancing Search Trees
Red-Black Trees — Idea [3/3]

A Red-Black Tree is a Binary-Tree representation of a 2-3-4 Tree.

▪ A RBT is a Binary Search Tree in which each node is red or black.

▪ Think of black nodes as representing 2-3-4 Tree nodes.

▪ Red nodes are extras needed since each node only holds one item.

The leaves are no longer all at the same level. However, given a
node, every path from it down to a leaf goes through the same
number of black nodes. Also, no red node has a red child.

19

5 12 15

3 30147 9 2522 40 45 48

24 35 42

20 28

50

2-3-4 Tree

Red-Black Tree

28

5 15

3 9 14 19

7

22 25 40

24

35

3012

20

45 50

48

42

31

2024-11-15 CS 311 Fall 2024

Other Self-Balancing Search Trees
Red-Black Trees — Implementations

Implementations of Red-Black Trees vary a bit.

▪ I have presented red and black nodes.

▪ A node’s color might be stored
with the pointer to it in the
parent node: red and
black pointers.

▪ The root is always black,

so it does not matter

whether the root’s color is
stored somewhere.

▪ Some implementations add null nodes.

▪ Null nodes are black and have no data.

▪ All leaves are null nodes, and all null
nodes are leaves.

▪ This may allow for slightly faster insert & delete

algorithms. It is an example of a time-space trade-off.

5 15

3 9 14 19

7

12

7

3 9 14 19

5 15

12

5 15

3 9 14 19

7

12

32

Other Self-Balancing Search Trees
Red-Black Trees — Usage

Red-Black Trees are a very good choice for in-memory Tables,
when worst-case performance is important.

▪ Red-Black Trees, or variations, are the usual implementation for
C++ STL sorted Tables: std::map, std::set, etc.

How do we use Red-Black Trees?

▪ Traverse & retrieve are exactly as for Binary Search Trees.

▪ Insert & delete are complicated, and will not be covered. They
involve rotations.

▪ The 2-3-4 Tree → Red-Black Tree conversion shows where Red-
Black Trees come from; but in practice, we never do the conversion.

Why do we use Red-Black Trees?

▪ Because they tend to be just a little more efficient than 2-3-4 Trees,
which are just a little more efficient than 2-3 Trees.

▪ All three have Θ(log n) insert, delete, and retrieve.

2024-11-15 CS 311 Fall 2024 33

2024-11-15 CS 311 Fall 2024

Other Self-Balancing Search Trees
Red-Black Trees — Efficiency

A Red-Black Tree is a Binary Search Tree (with extra data in each
node), but it is generally not strongly balanced.

However, we can prove that
a Red-Black Tree with n keys
must have height less than 2 log2(n + 1).

So the maximum height is Θ(log n), which means that the retrieve,
insert, and delete operations are Θ(log n) time.

20

5 15

3 9 14 19

7

22 25

2412

19

5 12 15

3 147 9 2522

24

20

Height of subtree: 3

Height of subtree: 1

34

2024-11-15 CS 311 Fall 2024

Other Self-Balancing Search Trees
AVL Trees — Preliminaries

Recall the question we began with: are there fast insert & delete
algorithms for a strongly balanced Binary Search Tree
that maintain the strongly balanced property?

Let’s answer: no, such algorithms are impossible—
without adding information to the tree.

However, we have seen that this fact is not really
important. There are structures that are just as good as strongly
balanced Binary Search Trees, and for which algorithms
maintaining the structure do exist: 2-3 Trees, 2-3-4 Trees, Red-
Black Trees, and others that we have not covered.

However, it turns out that we can efficiently maintain the strongly
balanced property of a Binary Search Tree if we add a small
amount of information to each node. The result is an AVL Tree.

40

5020

10 30

35

2024-11-15 CS 311 Fall 2024

Other Self-Balancing Search Trees
AVL Trees — Definition

Recall: a Binary Tree is strongly balanced,
if, for each node in the tree, its two
subtrees have heights differing by at most 1.

An AVL Tree is a strongly balanced Binary
Search Tree in which each node has an
extra piece of information: its balance:
left high [←], right high [→], or even [=].

Storing the balance in each node allows for logarithmic-time insert
& delete algorithms that maintain the required properties.

AVL Trees were the first kind of self-balancing search trees to be
developed [Georgy M. Adelson-Velsky & Yevgeniy M. Landis
1962].

40 ←

50 =20 =

10 = 30 =

Data item Balance

36

Other Self-Balancing Search Trees
AVL Trees — Rotation

We will not cover all the details of the AVL Tree algorithms. We
note that they are based on rotation operations.

▪ Rotation is pictured below. For nodes labeled A, C, E, the subtrees
of which they are the roots are moved along with them.

▪ We have seen this before, in the “semi-easy case” of the 2-3 Tree
delete algorithm.

Using rotations, as above, along with a fancier version (the double
rotation), we can design Θ(log n) insert and delete algorithms
that maintain the strongly balanced property.

Note that, by the strongly balanced property, retrieve is also
Θ(log n) for an AVL Tree.

2024-11-15 CS 311 Fall 2024

d

b

A

C E

d

Eb

A C

37

2024-11-15 CS 311 Fall 2024

Other Self-Balancing Search Trees
AVL Trees — Example

Example of AVL Tree insert: Do Binary Search Tree insert, then
proceed up to the root, adjusting balances & rotating as needed.

▪ Below we illustrate Insert 5.

40 =

50 =

20 =

10 ←

30 =5 =

5 =

Rotate

40 ←

50 =20 =

10 = 30 =

40 ←

50 =20 =

10 = 30 =

40 ←

50 =20 =

10 ← 30 =

5 =

40 ←

50 =20 ←

10 ← 30 =

5 =

40 ←

50 =20 ←

10 ← 30 =

5 =

Proceed up to the root,
adjusting balances &
rotating as needed

Binary Search Tree
Insert

38

Other Self-Balancing Search Trees
Wrap-Up [1/2]

All of these self-balancing search trees give Table implementations
in which retrieve, insert, and delete by key are Θ(log n).

Generally, the Red-Black Tree is agreed to have the best overall
performance, for in-memory datasets with many insert & delete
operations, when worst-case performance is important.

A Red-Black Tree, or some variation, is the usual implementation
for std::map, std::set, and other STL sorted containers.

Above, the word “overall” is important. For example, an AVL Tree
has a faster retrieve operation than a Red-Black Tree, since it
tends to have smaller height. (But a sorted array has an even
faster retrieve, using Binary Search.)

2024-11-15 CS 311 Fall 2024 39

2024-11-15 CS 311 Fall 2024

Other Self-Balancing Search Trees
Wrap-Up [2/2]

This ends our coverage of self-balancing search trees—for now.

Later, when we look at external data, we will cover another kind
of self-balancing search tree: B-Trees.

▪ B-Trees are similar to 2-3 Trees and 2-3-4 Trees, but nodes can be
larger. For example, a B-Tree node might contain 50 keys.

▪ Using large nodes can greatly increase efficiency when a Table is
stored on a block-access device—like a disk.

▪ We will also look at a B-Tree variant called a B+ Tree, which is
used to store directory information in many modern file systems.

40

	Slide 1: 2-3 Trees Other Self-Balancing Search Trees
	Slide 2: Unit Overview Tables & Priority Queues
	Slide 3
	Slide 4: Review Where Are We? — The Big Challenge
	Slide 5: Review Introduction to Tables
	Slide 6: Unit Overview Tables & Priority Queues
	Slide 7: Overview of Advanced Table Implementations
	Slide 8: Review 2-3 Trees [1/5]
	Slide 9: Review 2-3 Trees [2/5]
	Slide 10: Review 2-3 Trees [3/5]
	Slide 11: Review 2-3 Trees [4/5] (Try It!)
	Slide 12: Review 2-3 Trees [5/5] (Try It!)
	Slide 13
	Slide 14: 2-3 Trees Delete Algorithm [1/10]
	Slide 15: 2-3 Trees Delete Algorithm [2/10]
	Slide 16: 2-3 Trees Delete Algorithm [3/10]
	Slide 17: 2-3 Trees Delete Algorithm [4/10]
	Slide 18: 2-3 Trees Delete Algorithm [5/10]
	Slide 19: 2-3 Trees Delete Algorithm [6/10]
	Slide 20: 2-3 Trees Delete Algorithm [7/10]
	Slide 21: 2-3 Trees Delete Algorithm [8/10]
	Slide 22: 2-3 Trees Delete Algorithm [9/10] (Try It!)
	Slide 23: 2-3 Trees Delete Algorithm [10/10] (Try It!)
	Slide 24: 2-3 Trees Efficiency
	Slide 25: 2-3 Trees In Practice
	Slide 26
	Slide 27: Other Self-Balancing Search Trees Overview
	Slide 28: Other Self-Balancing Search Trees 2-3-4 Trees
	Slide 29: Other Self-Balancing Search Trees Red-Black Trees — Idea [1/3]
	Slide 30: Other Self-Balancing Search Trees Red-Black Trees — Idea [2/3]
	Slide 31: Other Self-Balancing Search Trees Red-Black Trees — Idea [3/3]
	Slide 32: Other Self-Balancing Search Trees Red-Black Trees — Implementations
	Slide 33: Other Self-Balancing Search Trees Red-Black Trees — Usage
	Slide 34: Other Self-Balancing Search Trees Red-Black Trees — Efficiency
	Slide 35: Other Self-Balancing Search Trees AVL Trees — Preliminaries
	Slide 36: Other Self-Balancing Search Trees AVL Trees — Definition
	Slide 37: Other Self-Balancing Search Trees AVL Trees — Rotation
	Slide 38: Other Self-Balancing Search Trees AVL Trees — Example
	Slide 39: Other Self-Balancing Search Trees Wrap-Up [1/2]
	Slide 40: Other Self-Balancing Search Trees Wrap-Up [2/2]

