
2-3 Trees

CS 311 Data Structures and Algorithms

Lecture Slides

Wednesday, November 13, 2024

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2005–2024 Glenn G. Chappell

Some material contributed by Chris Hartman

Unit Overview
Tables & Priority Queues

Topics

▪ Introduction to Tables

▪ Priority Queues

▪ Binary Heap Algorithms

▪ Heaps & Priority Queues in the C++ STL

▪ 2-3 Trees

▪ Other self-balancing search trees

▪ Hash Tables

▪ Prefix Trees

▪ Tables in the C++ STL & Elsewhere

2024-11-13 CS 311 Fall 2024









2

Review

2024-11-13 CS 311 Fall 2024 3

2024-11-13 CS 311 Fall 2024

Review
Where Are We? — The Big Challenge

Our problem for most of the rest of the semester:

▪ Store: A collection of data items, all of the same type.

▪ Operations:

▪ Access items [single item: retrieve/find, all items: traverse].

▪ Add new item [insert].

▪ Eliminate existing item [delete].

▪ Time & space efficiency are desirable.

A solution to this problem is a container.

In a generic container, client code can specify the value type.

Note the three primary
single-item operations:
retrieve, insert, delete.
We will see these over &
over again.

4

2024-11-13 CS 311 Fall 2024

Review
Introduction to Tables

A Table allows for arbitrary key-based look-up.

Three single-item operations: retrieve, insert, delete by key.

A Table implementation typically holds key-value pairs.

Three ideas for improving efficiency:

1. Restricted Table → Priority Queues

2. Keep a tree balanced → Self-balancing search trees

3. Magic functions → Hash Tables

(4, Peg) (9, Ann) (12, Ed)

Inefficient ImplementationsTable

Key Value

12 Ed

04 Peg

09 Ann

(12, Ed) (4, Peg) (9, Ann)

(4, Peg) (12, Ed)

(9, Ann)

5

Unit Overview
Tables & Priority Queues

Topics

▪ Introduction to Tables

▪ Priority Queues

▪ Binary Heap Algorithms

▪ Heaps & Priority Queues in the C++ STL

▪ 2-3 Trees

▪ Other self-balancing search trees

▪ Hash Tables

▪ Prefix Trees

▪ Tables in the C++ STL & Elsewhere

2024-11-13 CS 311 Fall 2024

Idea #1: Restricted Table

Idea #2: Keep a tree balanced

Idea #3: Magic functions

Several lousy implementations

A special-purpose
implementation: “the Radix
Sort of Table implementations”









6

2024-11-13 CS 311 Fall 2024

Review
Binary Heap Algorithms [1/4]

A Binary Heap (or just Heap) is a complete Binary Tree with one
data item—which includes a key—in each node, where no node
has a key that is less than the key in either of its children.

In practice, we use “Heap” to refer to the array-based
complete Binary Tree implementation of this.

56 50 25 5 22 25 11 1 3 10 3 12

56

50 25

1 3

5

10

22 25 11

3 12

Physical
Structure

Logical
Structure

7

2024-11-13 CS 311 Fall 2024

Review
Binary Heap Algorithms [2/4]

A Heap is a good basis for an implementation of a Priority Queue.

▪ Like Table, but retrieve/delete only highest key.

▪ Insert any key-value pair.

Algorithms for three primary operations

▪ getFront

▪ Get the root node.

▪ Constant time.

▪ insert

▪ Add new node to end of Heap. Sift-up last item.

▪ Logarithmic time if no reallocation required.

▪ Linear time otherwise. However, in practice, a Heap often does not

manage its own memory, which makes the operation logarithmic time.

▪ delete

▪ Swap first & last items. Reduce size of Heap. Sift-down new root item.

▪ Logarithmic time.

56 50 25 5 22 25 11 1 3 10 3 12

56

50 25

1 3

5

10

22 25 11

3 12

Faster than linear time!

8

Review
Binary Heap Algorithms [3/4]

To turn a range into a Heap, we could do n–1 Heap inserts. Each
insert op is Θ(log n); making a Heap in this way is Θ(n log n).

However, there is a faster way.

▪ Go through the items in reverse order.

▪ Sift-down each item through its descendants.

This Make-Heap algorithm is linear time!

2024-11-13 CS 311 Fall 2024

1 9 3 4 3 8

9 4 8 1 3 3

Leaf items:

sifting does

nothing





☺

4

89

1

3 3 4

89

1

3 3 4

81

9

3 3 1

84

9

3 3

4

39

1

3 8 4

39

1

3 8 4

9 3

1

3 8 4

9 8

1

3 3

9

2024-11-13 CS 311 Fall 2024

Review
Binary Heap Algorithms [4/4]

Heap Sort is a fast comparison sort that uses Heap algorithms.

▪ We can think of it as using a Priority Queue, except that the
algorithm is in-place, with no separate data structure used.

▪ Procedure. Make a Heap, then delete all items, using the Heap
delete procedure that places the deleted item in the top spot.

▪ The Make-Heap operation is Θ(n). Then we do n Heap delete
operations, each of which is Θ(log n). Total: Θ(n log n).

Recall Introsort, a Quicksort variant that switches to Heap Sort if
the recursion gets too deep. We can write this now.

See heap_sort.cpp for a Heap Sort

implementation. This uses the Heap

algorithms in heap_algs.hpp.

See introsort.cpp for an Introsort

implementation. This also uses the

Heap algorithms in heap_algs.hpp.

10

Review
Heaps & PQs in the C++ STL

All the Heap algorithms we wrote have counterparts (with different
names) in the STL. Each takes an optional comparison.

The STL has a Priority Queue: std::priority_queue (<queue>).

This is another container adapter: wrapper around a container.

And once again, you get to pick what that container is.

std::priority_queue<T, container<T>>

container defaults to std::vector.

std::priority_queue<T>

 // = std::priority_queue<T, std::vector<T>>

A comparison can be specified; see the slides from last time.

2024-11-13 CS 311 Fall 2024

Note the
name of the
header!

11

2024-11-13 CS 311 Fall 2024

Overview of Advanced Table Implementations

This ends our coverage of Idea #1: restricted Tables.

Next, actual Tables, allowing retrieve & delete for arbitrary keys.

We cover the following advanced Table implementations.

▪ Self-balancing search trees

▪ To make things easier, allow more children (?):

▪ 2-3 Tree

▪ Up to 3 children

▪ 2-3-4 Tree

▪ Up to 4 children

▪ Red-Black Tree

▪ Binary Tree representation of a 2-3-4 Tree

▪ Or back up and try for a strongly balanced
Binary Search Tree again:

▪ AVL Tree

▪ Alternatively, forget about trees entirely:

▪ Hash Table

▪ Finally, “the Radix Sort of Table implementations”:

▪ Prefix Tree

Idea #2:
Keep a tree balanced

Idea #3:
Magic functions

Later, we cover
other self-balancing

search trees:
B-Trees, B+ Trees.

12

2-3 Trees

2024-11-13 CS 311 Fall 2024 13

2024-11-13 CS 311 Fall 2024

2-3 Trees
Self-Balancing Search Trees [1/3]

Now we look at the second of the three ideas: keeping a Binary
Search Tree strongly balanced.

But let’s not insist on strongly balanced Binary Search Trees.
Rather, we want trees that, like these, have small height, and
do not require visiting many nodes to find a given key. We also
want fast insert/delete algorithms that keep the height small.

These structures are called self-balancing search trees.

▪ There are many kinds. All are similar to Binary Search Trees. They
may or may not be strongly balanced.
But many are not actually Binary Trees.

▪ All the self-balancing search trees we
will cover have logarithmic-time
retrieve, insert, and delete algorithms
that maintain the required structure.

8 18

20

32

352 4

7 12

23 28

14

2024-11-13 CS 311 Fall 2024

2-3 Trees
Self-Balancing Search Trees [2/3]

Small height can be easier to maintain if we allow a node to have
more than 2 children.

Q. If we do this, how do we maintain the search tree idea?

A. We generalize the order property of a Binary Search Tree:
For each pair of consecutive subtrees, a node has one key lying
between the keys in these subtrees.

8 18

20

32

352 4

7 12

23 28

7 lies between
{2,4} and {8}.

12 lies between
{8} and {18}.

20 lies between
{2,4,7,8,12,18}
and {23,28,32,35}.

32 lies between
{23,28} and {35}.

15

2024-11-13 CS 311 Fall 2024

2-3 Trees
Self-Balancing Search Trees [3/3]

A Binary-Search-Tree style node is
a 2-node.

▪ A node with 2 subtrees & 1 key.

▪ The key lies between the keys in
the two subtrees.

In a 2-3 Tree we also allow a node
to be a 3-node.

▪ A node with 3 subtrees & 2 keys.

▪ Each of the 2 keys lies between
the keys in the corresponding
pair of consecutive subtrees.

Later, we will look at 2-3-4 Trees,
which can also have 4-nodes.

2-node

10

·≤10 10≤·

3 9

3-node

3≤·≤9 9≤··≤3

2 5

4-node

5≤·≤7 7≤··≤2

7

2≤·≤5

2 subtrees
1 key
ordering

3 subtrees
2 keys
ordering

4 subtrees
3 keys
ordering

Like a Binary-
Search-Tree
node

16

2024-11-13 CS 311 Fall 2024

2-3 Trees
Definition [1/3]

A 2-3 Search Tree (usually just 2-3 Tree) is a tree with the
following properties [John Hopcroft 1970].

▪ Each node is either a 2-node or a 3-node.
The associated order properties hold.

▪ Each node either has its full complement
of children, or else is a leaf.

▪ All leaves lie in the same level.

We will look at a number of kinds of self-balancing search trees.
Most of these will be closely related to the 2-3 Tree.

We will cover algorithms for 2-3 Trees in detail. For other kinds of
self-balancing search trees, we might say something along the
lines of, “It works just like a 2-3 Tree, except …”

8 18

20

32

352 4

7 12

23 28

17

2024-11-13 CS 311 Fall 2024

2-3 Trees
Definition [2/3] (Try It!)

Which of the following are 2-3 Trees?

Answers on next slide.

D E F20 30

4010

A CB
10 20 10 20

4030 50 60

20 40

3010 50 60

10 20 3030

4010

18

2024-11-13 CS 311 Fall 2024

2-3 Trees
Definition [3/3] (Try It!)

Which of the following are 2-3 Trees?

Answers

D E F20 30

4010

A CB
10 20 10 20

4030 50 60

20 40

3010 50 60

10 20 3030

4010

 



The order property does
not hold (30 > 10).

Each node must either
have its full complement of
children, or else be a leaf.

This will turn out to be
a valid 2-3-4 Tree, but
it is not a 2-3 Tree. A
2-3 Tree has at most 2
items in each node.

19

2-3 Trees
Traverse

To traverse a 2-3 Tree, generalize the inorder traversal of a
Binary Search Tree.

▪ For each leaf, go through the items in it, in order.

▪ For each non-leaf 2-node:

▪ Traverse subtree 1.

▪ Visit the item.

▪ Traverse subtree 2.

▪ For each non-leaf 3-node:

▪ Traverse subtree 1.

▪ Visit item 1.

▪ Traverse subtree 2.

▪ Visit item 2.

▪ Traverse subtree 3.

This procedure visits all the items in sorted order. A 2-3 Tree is
another sorted container.

2024-11-13 CS 311 Fall 2024

8 18

20

32

352 4

7 12

23 28

20

2-3 Trees
Single-Item Operations

The single-item operations are the usual three: retrieve, insert,
and delete. All are done by key.

To retrieve by key in a 2-3 Tree, search: start at the root and
proceed downward, making comparisons, just as when doing a
search in a Binary Search Tree.

3-nodes make the procedure just a bit
more complicated.

How do we insert & delete by key in a 2-3 Tree?

▪ These are trickier problems.

▪ It turns out that both have efficient—Θ(log n)—algorithms that
maintain the properties of the tree. That is why we like 2-3 Trees.

2024-11-13 CS 311 Fall 2024

8 18

20

32

352 4

7 12

23 28

21

2024-11-13 CS 311 Fall 2024

2-3 Trees
Insert Algorithm [1/6]

Ideas in the 2-3 Tree insert algorithm:

▪ Search: find the proper leaf. Add the item to that leaf.

▪ Allow nodes to expand when legal.

▪ If a node becomes over-full (3 items), then split the subtree
rooted at that node and propagate the middle item upward.

▪ If we split the entire tree, then create a new root node—which
effectively advances all other nodes down one level simultaneously.

Example 1. Insert 9.

8 18

20

32

352 4

7 12

23 28 18

20

32

352 4

7 12

23 288 9

22

2024-11-13 CS 311 Fall 2024

2-3 Trees
Insert Algorithm [2/6]

Example 2. Insert 5.

818

20

32

352 4

7 12

23 28 18

20

32

35

7 12

23 288 2 4 5

8 18

20

32

3523 28

4 7 12

2 5 8 18

32

3523 282 5

124

7 20

Over-full nodes
are blue.

23

2024-11-13 CS 311 Fall 2024

2-3 Trees
Insert Algorithm [3/6]

Example 3. Insert 3.

8182 4

7 12

18

7 12

8 2 3 4

8 18

3 7 12

2 4 8 182 4

123

7

Here we see how
a 2-3 Tree can

increase in height.

Over-full nodes
are blue.

24

2024-11-13 CS 311 Fall 2024

2-3 Trees
Insert Algorithm [4/6]

2-3 Tree Insert Algorithm (outline)

▪ Search: find the leaf that the new item goes in.

▪ In the process of finding this leaf, you may determine that the given key
is already in the tree. If so, then act accordingly.

▪ Add the item to the proper node.

▪ If the node is over-full, then split it (dragging subtrees along, if
necessary), and move the middle item up:

▪ If there is no parent, then make a new root. Done.

▪ Otherwise, add the moved-up item to the parent node. Recursively apply
the insertion procedure one level up.

25

2024-11-13 CS 311 Fall 2024

2-3 Trees
Insert Algorithm [5/6] (Try It!)

Do insert 21 in the following 2-3 Tree. Draw the resulting Tree.

Answer on next slide.

18

20

32

352 4

7 12

23 288

26

2024-11-13 CS 311 Fall 2024

2-3 Trees
Insert Algorithm [6/6] (Try It!)

Do insert 21 in the following 2-3 Tree. Draw the resulting Tree.

Answer

18

20

32

352 4

7 12

23 288 18

20

32

352 4

7 12

8 21 23 28

18

20

2 4

7 12

8 21 28

23 32

35

27

2-3 Trees
TO BE CONTINUED …

2-3 Trees will be continued next time.

2024-11-13 CS 311 Fall 2024 28

	Slide 1: 2-3 Trees
	Slide 2: Unit Overview Tables & Priority Queues
	Slide 3
	Slide 4: Review Where Are We? — The Big Challenge
	Slide 5: Review Introduction to Tables
	Slide 6: Unit Overview Tables & Priority Queues
	Slide 7: Review Binary Heap Algorithms [1/4]
	Slide 8: Review Binary Heap Algorithms [2/4]
	Slide 9: Review Binary Heap Algorithms [3/4]
	Slide 10: Review Binary Heap Algorithms [4/4]
	Slide 11: Review Heaps & PQs in the C++ STL
	Slide 12: Overview of Advanced Table Implementations
	Slide 13
	Slide 14: 2-3 Trees Self-Balancing Search Trees [1/3]
	Slide 15: 2-3 Trees Self-Balancing Search Trees [2/3]
	Slide 16: 2-3 Trees Self-Balancing Search Trees [3/3]
	Slide 17: 2-3 Trees Definition [1/3]
	Slide 18: 2-3 Trees Definition [2/3] (Try It!)
	Slide 19: 2-3 Trees Definition [3/3] (Try It!)
	Slide 20: 2-3 Trees Traverse
	Slide 21: 2-3 Trees Single-Item Operations
	Slide 22: 2-3 Trees Insert Algorithm [1/6]
	Slide 23: 2-3 Trees Insert Algorithm [2/6]
	Slide 24: 2-3 Trees Insert Algorithm [3/6]
	Slide 25: 2-3 Trees Insert Algorithm [4/6]
	Slide 26: 2-3 Trees Insert Algorithm [5/6] (Try It!)
	Slide 27: 2-3 Trees Insert Algorithm [6/6] (Try It!)
	Slide 28: 2-3 Trees TO BE CONTINUED …

