
Thoughts on Assignment 7
Binary Heap Algorithms
Heaps & Priority Queues in the C++ STL

CS 311 Data Structures and Algorithms

Lecture Slides

Monday, November 11, 2024

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2005–2024 Glenn G. Chappell

Some material contributed by Chris Hartman

continued

2024-11-11 CS 311 Fall 2024

Unit Overview
The Basics of Trees

Topics

▪ Introduction to Trees

▪ Binary Trees

▪ Binary Search Trees

2

Review
Part 1

2024-11-11 CS 311 Fall 2024 3

2024-11-11 CS 311 Fall 2024

Review
Where Are We? — The Big Challenge

Our problem for most of the rest of the semester:

▪ Store: A collection of data items, all of the same type.

▪ Operations:

▪ Access items [single item: retrieve/find, all items: traverse].

▪ Add new item [insert].

▪ Eliminate existing item [delete].

▪ Time & space efficiency are desirable.

A solution to this problem is a container.

In a generic container, client code can specify the value type.

Note the three primary
single-item operations:
retrieve, insert, delete.
We will see these over &
over again.

4

2024-11-11 CS 311 Fall 2024

Review
Binary Trees — Implementation

A common way to implement a Binary Tree is to use separately
allocated nodes referred to by pointers—similar to our
implementation of a Linked List.

▪ Each node has a data item and two child pointers: left & right.

▪ A pointer is null if there is no child.

3

21

2 527

1

head

3

5

2024-11-11 CS 311 Fall 2024

Review
Binary Search Trees — What a Binary Search Tree Is

A Binary Search Tree is a Binary Tree
in which each node contains a single
data item, which includes a key, and:

▪ Descendants holding keys less than
the node’s are in its left subtree.

▪ Descendants holding keys greater
than the node’s are in its right subtree.

In other words, an inorder traversal
gives keys in sorted order.

In other words, an inorder traversal
gives keys in sorted order.

x

Items ≤ x Items ≥ x

Must be ≤ x

13

16

30

4

Inorder traversal:
4 10 13 16 30

10

6

2024-11-11 CS 311 Fall 2024

Review
Binary Search Trees — Operations

Algorithms for BST operations:

▪ Traverse

▪ Recursively traverse left subtree of root.

▪ Visit the root.

▪ Recursively traverse right subtree of root.

▪ Retrieve

▪ Search. Start at the root. Go down, left or right as appropriate, until
either the given key or an empty spot is found.

▪ Insert

▪ Search, then …

▪ Put the value in the spot where it should go.

▪ Delete

▪ Search, then …

▪ Check the number of children the node has:

▪ 0. Delete node.

▪ 1. Replace subtree rooted at node with subtree rooted at child.

▪ 2. Copy data from (or swap data with) inorder successor. Proceed as above.

Inorder
Traversal

13

16

30

4

10

7

Thoughts on Assignment 7

2024-11-11 CS 311 Fall 2024 8

Thoughts on Assignment 7
Overview

In Assignment 7, you will implement the Treesort algorithm.

template<typename FDIter>

void treesort(FDIter first, FDIter last);

Treesort is a general-purpose comparison sort that uses a Binary
Search Tree—which you will need to implement.

We look at:

▪ How Treesort works

▪ Things you will need to do

▪ Writing a Binary Search Tree

▪ Finding the value type of an iterator

▪ Inserting into a Binary Search Tree

▪ Inorder traversal of a Binary Search Tree

2024-11-11 CS 311 Fall 2024 9

Thoughts on Assignment 7
Treesort — Introduction

A sorted container often gives us a sorting algorithm: insert all
items into the container, and then iterate through it.

For a SortedSequence, this algorithm is almost Insertion Sort. (It
would be a non-in-place version of Insertion Sort.)

For a Binary Search Tree, the algorithm is called Treesort.

▪ Procedure

▪ Go through the list to be sorted, inserting each item into a BST.

▪ Traverse (inorder) the tree; copy each item back to the original list.

▪ We must allow multiple equivalent keys in our BST.

Treesort is not a terribly good algorithm.

2024-11-11 CS 311 Fall 2024 10

Thoughts on Assignment 7
Treesort — Illustration

Treesort this list.

▪ Go through the list to be sorted, inserting each item into a BST.

▪ Traverse (inorder) the tree; copy each item back to the original list.

2024-11-11 CS 311 Fall 2024

35

404 21

479

25

25 47 9 21 40 4 35

4 9 21 25 35 40 47

11

Thoughts on Assignment 7
Treesort — Properties

What is the order of Treesort?

▪ Treesort does n BST inserts; each is Θ(n). Then a traverse: Θ(n).

▪ So Treesort is Θ(n2).

▪ However, BST insert is Θ(log n) on average.

▪ So Treesort is pretty fast on average: Θ(n log n). ☺

Q. Have we seen Treesort before?

A. Kind of. It is much like an unoptimized Quicksort—in disguise.

Two important differences:

▪ Treesort requires a a large additional memory space, because it
does not do its work in the original storage.

▪ Treesort is not limited by the requirement of a fast in-place partition
algorithm. As a result, it is stable.

2024-11-11 CS 311 Fall 2024 12

Thoughts on Assignment 7
Writing a Binary Search Tree [1/2]

You will need to define a Binary Search Tree node type.

▪ Define a class/struct, OR

▪ Use std::tuple.

It is not necessary to write a tree class.

▪ A tree can be handled via a (smart?)
pointer to its root node.

▪ However, you may write a tree class if you wish.

In the following slides, I assume you use a simple struct for a
Binary Search Tree node, and you refer to a node with a
unique_ptr. But do things differently if you want.

2024-11-11 CS 311 Fall 2024

Similarly, we have never
written a Linked List class.

13

Thoughts on Assignment 7
Writing a Binary Search Tree [2/2]

Your Binary Search Tree implementation does not need to include
all BST operations.

Treesort does the following:

1. Insert all items into a Binary Search Tree.

2. Traverse the tree, copying items to the original range.

3. Destroy the tree.

Destruction is automatic, if you use smart pointers.

So you need to be able to:

▪ Insert an item, and

▪ Do an inorder traversal.

2024-11-11 CS 311 Fall 2024 14

Thoughts on Assignment 7
Finding the Value Type

Find the type of the values to sort with std::iterator_traits.

#include <iterator>

// For std::iterator_traits;

template<typename FDIter>

void treesort(FDIter first, FDIter last)

{

 using Value = typename

 std::iterator_traits<FDIter>::value_type;

Then you can do things like this:

 auto p = std::make_unique<BSTreeNode<Value>>(…

2024-11-11 CS 311 Fall 2024

For code that uses

std::iterator_traits,

see merge_sort.cpp.

My node struct

15

Thoughts on Assignment 7
Binary Search Tree Insert [1/2]

Suggestion. Write a Binary Search Tree insert function that takes:

▪ A smart pointer to a tree node, by reference.

▪ The item to insert.

Operation:

▪ If the pointer is null, then set it to point to a new node.

▪ Otherwise, it points to a node. Compare that node’s item with the
given item. Recurse with the node’s left- or right-child pointer, as
appropriate.

To insert an item into the tree, call the above function with:

▪ The head pointer for the tree.

▪ The item to be inserted.

2024-11-11 CS 311 Fall 2024 16

Thoughts on Assignment 7
Binary Search Tree Insert [2/2]

So your insert function would look like the following.

template<typename Value>

void insert(unique_ptr<BSTreeNode<Value>> & head,

 const Value & item);

2024-11-11 CS 311 Fall 2024 17

Thoughts on Assignment 7
Inorder Traversal

Suggestion. Write an inorder traversal function that takes:

▪ A smart pointer to a tree node, by reference-to-const.

▪ An iterator, by reference.

Operation:

▪ If the pointer is null, return.

▪ Recurse with the left-child pointer.

▪ Write the data to the location referenced by the iterator.

▪ Increment the iterator.

▪ Recurse with the right-child pointer.

To copy the data in the tree back to the original storage, call the
above function with:

▪ The head pointer for the tree.

▪ Parameter first from function treesort.

2024-11-11 CS 311 Fall 2024

*iter++ = unptr->_data;

18

Thoughts on Assignment 7
Final Note

What about stack overflow?

The Binary Search Tree created during Treesort can easily have
large height—for example, if a large range is already sorted.

And this can make recursive insertion and traversal algorithms
crash due to stack overflow.

However, you are not required to deal with this issue in
Assignment 7. In particular, the test program will not test your
code with data that will cause stack overflow in a reasonable
implementation.

2024-11-11 CS 311 Fall 2024 19

Unit Overview
Tables & Priority Queues

Topics

▪ Introduction to Tables

▪ Priority Queues

▪ Binary Heap Algorithms

▪ Heaps & Priority Queues in the C++ STL

▪ 2-3 Trees

▪ Other self-balancing search trees

▪ Hash Tables

▪ Prefix Trees

▪ Tables in the C++ STL & Elsewhere

2024-11-11 CS 311 Fall 2024

(part)

20

Review
Part 2

2024-11-11 CS 311 Fall 2024 21

2024-11-11 CS 311 Fall 2024

Review
Introduction to Tables [1/2]

A Table allows for look-up by arbitrary key.

Three primary operations: retrieve, insert, delete.

Possible Table implementations (all too slow!):

▪ A Sequence holding key-value pairs.

▪ Array-based or Linked-List-based.

▪ Sorted or unsorted.

▪ A Binary Search Tree holding key-value pairs.

▪ Implemented using a pointer-based Binary Tree.

Array
Implementations

Linked List
Implementations

Table

Key Value

12 Ed

04 Peg

09 Ann

(4, Peg) (9, Ann) (12, Ed) (4, Peg) (9, Ann) (12, Ed)

(12, Ed) (4, Peg) (9, Ann) (12, Ed) (4, Peg) (9, Ann)

Unsorted Unsorted

Sorted by Key Sorted by Key (4, Peg) (12, Ed)

Binary Search Tree
Implementation

(9, Ann)

22

2024-11-11 CS 311 Fall 2024

Review
Introduction to Tables [4/4]

Three ideas for dealing with the fact that every Table
implementation we can think of is inefficient.

Idea #1: Restricted Tables

▪ Only allow retrieve/delete on the greatest key.

▪ In practice: Priority Queues

Idea #2: Keep a tree balanced

▪ In practice: Self-balancing search trees (2-3 Trees, etc.)

Idea #3: Magic functions

▪ Use an unsorted array. Each item can be a key-value pair or empty.

▪ A magic function tells the index where a given key is stored.

▪ Retrieve/insert/delete in constant time? No, but still a useful idea.

▪ In practice: Hash Tables

23

Unit Overview
Tables & Priority Queues

Topics

▪ Introduction to Tables

▪ Priority Queues

▪ Binary Heap Algorithms

▪ Heaps & Priority Queues in the C++ STL

▪ 2-3 Trees

▪ Other self-balancing search trees

▪ Hash Tables

▪ Prefix Trees

▪ Tables in the C++ STL & Elsewhere

2024-11-11 CS 311 Fall 2024

Idea #1: Restricted Table

Idea #2: Keep a tree balanced

Idea #3: Magic functions

Several lousy implementations

A special-purpose
implementation: “the Radix
Sort of Table implementations”

(part)

24

2024-11-11 CS 311 Fall 2024

Review
Priority Queues

A Priority Queue is a restricted-access Table. We can insert any
item, but we only retrieve/delete the item with the greatest key.

Despite the name, a Priority Queue is not a Queue!

We will see an application of a Priority Queue later in the semester.

The most interesting thing about Priority Queues is their most
common implementation: a structure called a Binary Heap.

25

2024-11-11 CS 311 Fall 2024

Review
Binary Heap Algorithms [1/8]

A Binary Heap (or just Heap) is a complete Binary Tree with one
data item—which includes a key—in each node, where no node
has a key that is less than the key in either of its children.

In practice, we use “Heap” to refer to the array-based
complete Binary Tree implementation of this.

56 50 25 5 22 25 11 1 3 10 3 12

56

50 25

1 3

5

10

22 25 11

3 12

Physical
Structure

Logical
Structure

26

2024-11-11 CS 311 Fall 2024

Review
Binary Heap Algorithms [2/8]

A Heap is a good basis for an implementation of a Priority Queue.

Algorithms for three primary operations

▪ getFront

▪ Get the root node.

▪ Constant time.

▪ insert

▪ Add new node to end of Heap. Sift-up last item.

▪ Logarithmic time if no reallocation required.

▪ Linear time otherwise. However, in practice, a Heap often does not
manage its own memory, which makes the operation logarithmic time.

▪ delete

▪ Swap first & last items. Reduce size of Heap. Sift-down new root item.

▪ Logarithmic time.

56 50 25 5 22 25 11 1 3 10 3 12

56

50 25

1 3

5

10

22 25 11

3 12

Faster than linear time!

27

2024-11-11 CS 311 Fall 2024

Review
Binary Heap Algorithms [3/8]

To insert into a Heap, add new node/item at end. Then sift-up.

▪ If value is in root, or is ≤ its parent, then stop.

▪ Otherwise, swap item with parent. Repeat at new position.

56

50 25

1 3

5

10

22 11

3

56

50 25

1 3

5

10

22 11

3

56

50 32

1 3

5

10

22 11

3

12 32 12 25

12 25

Done

Ick!

25 32

25

28

2024-11-11 CS 311 Fall 2024

Review
Binary Heap Algorithms [4/8]

To delete the root item from a Heap, swap root & last items, and
reduce the size of the Heap. The sift-down the new root item.

▪ If value is ≥ all of its children, the stop.

▪ Otherwise, swap item with its largest child. Repeat at new position.

12

50 25

1 3

5

10

22 25 11

3

50

12 25

1 3

5

10

22 25 11

3

50

22 25

1 3

5

10

12 25 11

3

Done

Ick!56

50 25

1 3

5

10

22 25 11

3 12

29

2024-11-11 CS 311 Fall 2024

Review
Binary Heap Algorithms [5/8] (Try It!)

Do Heap insert 50 on the Binary Heap shown below. Draw the
resulting Heap, as a tree.

Answer on next slide.

40

30 35

20 15

30

2024-11-11 CS 311 Fall 2024

Review
Binary Heap Algorithms [6/8] (Try It!)

Do Heap insert 50 on the Binary Heap shown below. Draw the
resulting Heap, as a tree.

Answer

40

30 35

20 15 20 15 50

40

30 35

20 15 35

40

30 50

20 15 35

50

30 40

31

2024-11-11 CS 311 Fall 2024

Review
Binary Heap Algorithms [7/8]

Heap insert and delete are usually given a random-access range.
The item to insert or delete is the last item; the rest is a Heap.

▪ Action of Heap insert:

▪ Action of Heap delete:

Note that Heap algorithms can do all modifications using swap.
This usually allows for both speed and (exception) safety.

Given Heap Item to insert New Heap

Given Heap Item deletedNew Heap

This is where we want the item
to be, initially (right?).

This is where the
swap puts the
item (right?).

32

Review
Binary Heap Algorithms [8/8]

DONE

▪ Write the Heap insert algorithm.

▪ Prototype is shown below.

▪ The item to be inserted is the final item in the given range.

▪ All other items should form a Heap already.

▪ Write other Heap algorithms as time permits.

// Requirements on types:

// RAIter is a random-access iterator type.

template<typename RAIter>

void heapInsert(RAIter first, RAIter last);

2024-11-11 CS 311 Fall 2024

See heap_algs.hpp. The other

Heap algorithms have also

been written.

See heap_algs_main.cpp for a

program that uses this header.

33

Binary Heap Algorithms

2024-11-11 CS 311 Fall 2024

continued

34

Binary Heap Algorithms
Fast Make-Heap

To turn a range into a Heap, we could do n–1 Heap inserts. Each
insert op is Θ(log n); making a Heap in this way is Θ(n log n).

However, there is a faster way.

▪ Go through the items in reverse order.

▪ Sift-down each item through its descendants.

This Make-Heap algorithm is linear time!

2024-11-11 CS 311 Fall 2024

1 9 3 4 3 8

9 4 8 1 3 3

Leaf items:

sifting does

nothing

☺

4

89

1

3 3 4

89

1

3 3 4

81

9

3 3 1

84

9

3 3

4

39

1

3 8 4

39

1

3 8 4

9 3

1

3 8 4

9 8

1

3 3

35

2024-11-11 CS 311 Fall 2024

Binary Heap Algorithms
Heap Sort — Introduction

Our last sorting algorithm is Heap Sort.

▪ This is a fast comparison sort that uses Heap algorithms.

▪ We can think of it as using a Priority Queue, except that the
algorithm is in-place, with no separate data structure used.

▪ Procedure. Make a Heap, then delete all items, using the Heap
delete procedure that places the deleted item in the top spot.

Is Heap Sort efficient?

▪ The Make-Heap operation is Θ(n).

▪ Then we do n Heap delete operations, each of which is Θ(log n).

▪ Total: Θ(n log n).

36

2024-11-11 CS 311 Fall 2024

Binary Heap Algorithms
Heap Sort — Illustration [1/2]

Below: Make-Heap operation. Next slide: Heap deletion phase.

3 2 1 4

3 2 1 4

Start

Add 4

1

3

2

4

1

3

2

4

3 2 1 4Add 1 2

3

4

1

3 2 1 4Add 2

3

4

12

3 4 1 2

3

2

14

3 4 1 2

2

14Add 3

3

4 3 1 2

2

13

4

Now the
entire array

is a Heap.

☺

This is what
happens in
memory.

This is a picture of
the logical structure.

37

2024-11-11 CS 311 Fall 2024

Binary Heap Algorithms
Heap Sort — Illustration [2/2]

Heap deletion phase:

2

1
1 2 3 4

11 2 3 4

1

4

4 3 1 2

2

Start

Delete 3

3 1

2
2 3 1 4

Delete 4

2 1

3
3 2 1 4

3 2 1 4

4 3 1 2

2 1 3 4Delete 2

1 2 3 4

1

2
2 1 3 4

Now the
array is
sorted.

The last
Heap
delete does nothing,
and may be omitted.

3

38

Binary Heap Algorithms
Heap Sort — Properties

Heap Sort is in-place.

▪ We can create a Heap in a given array.

▪ As each item is removed from the Heap, put it in the array item
that was removed from the Heap.

▪ Starting the delete by swapping root and last items does this.

▪ Results

▪ Ascending order, if we used a Maxheap.

▪ Only constant additional memory is required. No reallocation is done.

So Heap Sort uses less space than Introsort or array Merge Sort.

▪ Heap Sort: Θ(1).

▪ Introsort: Θ(log n).

▪ Merge Sort on an array: Θ(n).

Heap Sort can easily be generalized.

▪ Stopping before the sort is finished.

▪ Doing Heap insert operations in the middle of the sort.

2024-11-11 CS 311 Fall 2024 39

2024-11-11 CS 311 Fall 2024

Binary Heap Algorithms
Heap Sort — CODE

TO DO

▪ Write Heap Sort, using the Heap algorithms that are already
written.

Done. See heap_sort.cpp.

40

Binary Heap Algorithms
Heap Sort — Analysis

Efficiency ☺

▪ Heap Sort is Θ(n log n).

Requirements on Data

▪ Heap Sort requires random-access data.

Space Usage ☺

▪ Heap Sort is in-place.

Stability

▪ Heap Sort is not stable.

Performance on Nearly Sorted Data

▪ Heap Sort is not significantly faster or slower for nearly sorted data.

Notes

▪ Heap Sort is significantly slower than both Merge Sort and Introsort.

▪ Heap Sort can be stopped early, with useful results.

▪ Recall that Heap Sort is the usual fallback algorithm in Introsort.

2024-11-11 CS 311 Fall 2024

We have seen these
together before
(Iterative Merge Sort on
a Linked List), but never
for an array.

41

2024-11-11 CS 311 Fall 2024

Binary Heap Algorithms
Final Thoughts

In practice, a Binary Heap is not so much a data structure as it is a
random-access range with a particular ordering property.

Associated with Heaps are a collection of algorithms that allow us
to efficiently create Priority Queues and do comparison sorting.

These algorithms are the things to remember. Thus the subject
heading.

42

Heaps & Priority Queues
in the C++ STL

2024-11-11 CS 311 Fall 2024 43

Heaps & Priority Queues in the C++ STL
Heap Algorithms [1/2]

The C++ STL includes several Heap algorithms, in <algorithm>.

▪ Each takes a range specified by a pair of random-access iterators.

▪ An optional third parameter is a custom comparison.

std::push_heap

▪ Heap insert. [first, last-1) is a Heap. Item to insert is *(last-1).

std::pop_heap

▪ Heap delete. Puts the deleted element in *(last-1).

std::make_heap

▪ Make a range into a Heap, using the fast Make-Heap algorithm.

std::sort_heap

▪ Given a Heap. Does n–1 pop_heap calls.
Result: sorted range. (So make_heap + sort_heap does Heap Sort.)

std::is_heap

▪ Test whether a range is a Heap. Returns bool.

2024-11-11 CS 311 Fall 2024

These are the same algorithms
implemented in heap_algs.hpp.

44

Heaps & Priority Queues in the C++ STL
Heap Algorithms [2/2]

std::partial_sort, in <algorithm>, does Heap Sort, but may
stop early.

▪ It takes three iterators: first, middle, last, and an optional
comparison.

▪ [first, last) must be a valid range, and middle must be between first
& last (inclusive).

▪ It does Heap Sort—in reverse order using a Minheap—stopping
when the range [first, middle) has been filled with sorted data.

▪ Result. The range [first, middle) contains exactly the data it would if
the entire range were sorted. The range [middle, last) contains the
items it would contain if the entire range were sorted, but they may
not be in sorted order.

A variation, std::partial_sort_copy, also in <algorithm>,
leaves data in the original range unchanged, placing its results
in a second provided range.

2024-11-11 CS 311 Fall 2024 45

Heaps & Priority Queues in the C++ STL
std::priority_queue — Introduction

The STL has a Priority Queue: std::priority_queue (<queue>).

This is another container adapter: wrapper around a container.

And once again, you get to pick what that container is.

std::priority_queue<T, container<T>>

▪ T is the value type.

▪ container<T> can be any standard-conforming random-access
sequence container with value type T.

▪ In particular, container can be vector or deque.

▪ But not list, as it is not random-access.

container defaults to std::vector.

std::priority_queue<T>

 // = std::priority_queue<T, std::vector<T>>

2024-11-11 CS 311 Fall 2024

Note the name
of the header!

46

Heaps & Priority Queues in the C++ STL
std::priority_queue — Members

The member function names used by std::priority_queue are
the same as those used by std::stack.

▪ Not those used by std::queue.

▪ So std::priority_queue has top, not front.

Given a variable pq of type std::priority_queue<T>, we can do:

▪ pq.top()

▪ pq.push(item)

▪ item is some value of type T.

▪ pq.pop()

▪ pq.empty()

▪ pq.size()

2024-11-11 CS 311 Fall 2024 47

Heaps & Priority Queues in the C++ STL
std::priority_queue — Comparison [1/2]

The comparison used by priority_queue defaults to operator<.

priority_queue<Foo> pq1; // Use operator<

We can specify a custom comparison. An optional template
parameter is the type of a comparison object.

Below is a Priority Queue whose top value is the smallest.

priority_queue<Foo, std::vector<Foo>,

 std::greater<Foo>> pq2; // Use operator>

If, as above, we pass no ctor arguments, then our comparison
object is a default-constructed object of the given type.

2024-11-11 CS 311 Fall 2024

We give the third template
argument, so we must
also give the second.

The type of the
comparison

48

Heaps & Priority Queues in the C++ STL
std::priority_queue — Comparison [2/2]

To pass our own comparison function, we specify:

▪ Its type, as the third template argument.

▪ The comparison itself, as a constructor argument.

auto comp = [](const Foo & a, const Foo & b)

{ return a.bar() < b.bar(); };

std::priority_queue<Foo, std::vector<Foo>,

 decltype(comp)> pq3(comp);

2024-11-11 CS 311 Fall 2024

Definition of
our comparison

The type of our
comparison

Our comparison

See pq.cpp for

example code.

We will see a more

practical example
near the end of

the semester.

49

2024-11-11 CS 311 Fall 2024

Overview of Advanced Table Implementations

This ends our coverage of Idea #1: restricted Tables.

Next, actual Tables, allowing retrieve & delete for arbitrary keys.

We cover the following advanced Table implementations.

▪ Self-balancing search trees

▪ To make things easier, allow more children (?):

▪ 2-3 Tree

▪ Up to 3 children

▪ 2-3-4 Tree

▪ Up to 4 children

▪ Red-Black Tree

▪ Binary Tree representation of a 2-3-4 Tree

▪ Or back up and try for a strongly balanced
Binary Search Tree again:

▪ AVL Tree

▪ Alternatively, forget about trees entirely:

▪ Hash Table

▪ Finally, “the Radix Sort of Table implementations”:

▪ Prefix Tree

Idea #2:
Keep a tree balanced

Idea #3:
Magic functions

Later, we cover
other self-balancing

search trees:
B-Trees, B+ Trees.

50

	Slide 1: Thoughts on Assignment 7 Binary Heap Algorithms Heaps & Priority Queues in the C++ STL
	Slide 2: Unit Overview The Basics of Trees
	Slide 3
	Slide 4: Review Where Are We? — The Big Challenge
	Slide 5: Review Binary Trees — Implementation
	Slide 6: Review Binary Search Trees — What a Binary Search Tree Is
	Slide 7: Review Binary Search Trees — Operations
	Slide 8
	Slide 9: Thoughts on Assignment 7 Overview
	Slide 10: Thoughts on Assignment 7 Treesort — Introduction
	Slide 11: Thoughts on Assignment 7 Treesort — Illustration
	Slide 12: Thoughts on Assignment 7 Treesort — Properties
	Slide 13: Thoughts on Assignment 7 Writing a Binary Search Tree [1/2]
	Slide 14: Thoughts on Assignment 7 Writing a Binary Search Tree [2/2]
	Slide 15: Thoughts on Assignment 7 Finding the Value Type
	Slide 16: Thoughts on Assignment 7 Binary Search Tree Insert [1/2]
	Slide 17: Thoughts on Assignment 7 Binary Search Tree Insert [2/2]
	Slide 18: Thoughts on Assignment 7 Inorder Traversal
	Slide 19: Thoughts on Assignment 7 Final Note
	Slide 20: Unit Overview Tables & Priority Queues
	Slide 21
	Slide 22: Review Introduction to Tables [1/2]
	Slide 23: Review Introduction to Tables [4/4]
	Slide 24: Unit Overview Tables & Priority Queues
	Slide 25: Review Priority Queues
	Slide 26: Review Binary Heap Algorithms [1/8]
	Slide 27: Review Binary Heap Algorithms [2/8]
	Slide 28: Review Binary Heap Algorithms [3/8]
	Slide 29: Review Binary Heap Algorithms [4/8]
	Slide 30: Review Binary Heap Algorithms [5/8] (Try It!)
	Slide 31: Review Binary Heap Algorithms [6/8] (Try It!)
	Slide 32: Review Binary Heap Algorithms [7/8]
	Slide 33: Review Binary Heap Algorithms [8/8]
	Slide 34
	Slide 35: Binary Heap Algorithms Fast Make-Heap
	Slide 36: Binary Heap Algorithms Heap Sort — Introduction
	Slide 37: Binary Heap Algorithms Heap Sort — Illustration [1/2]
	Slide 38: Binary Heap Algorithms Heap Sort — Illustration [2/2]
	Slide 39: Binary Heap Algorithms Heap Sort — Properties
	Slide 40: Binary Heap Algorithms Heap Sort — CODE
	Slide 41: Binary Heap Algorithms Heap Sort — Analysis
	Slide 42: Binary Heap Algorithms Final Thoughts
	Slide 43
	Slide 44: Heaps & Priority Queues in the C++ STL Heap Algorithms [1/2]
	Slide 45: Heaps & Priority Queues in the C++ STL Heap Algorithms [2/2]
	Slide 46: Heaps & Priority Queues in the C++ STL std::priority_queue — Introduction
	Slide 47: Heaps & Priority Queues in the C++ STL std::priority_queue — Members
	Slide 48: Heaps & Priority Queues in the C++ STL std::priority_queue — Comparison [1/2]
	Slide 49: Heaps & Priority Queues in the C++ STL std::priority_queue — Comparison [2/2]
	Slide 50: Overview of Advanced Table Implementations

