
Priority Queues
Binary Heap Algorithms

CS 311 Data Structures and Algorithms

Lecture Slides

Friday, November 8, 2024

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2005–2024 Glenn G. Chappell

Some material contributed by Chris Hartman

2024-11-08 CS 311 Fall 2024

Unit Overview
The Basics of Trees

Topics

▪ Introduction to Trees

▪ Binary Trees

▪ Binary Search Trees

2

Review

2024-11-08 CS 311 Fall 2024 3

2024-11-08 CS 311 Fall 2024

Review
Where Are We? — The Big Challenge

Our problem for most of the rest of the semester:

▪ Store: A collection of data items, all of the same type.

▪ Things we need to be able to do:

▪ Access items [single item: retrieve/find, all items: traverse].

▪ Add new item [insert].

▪ Eliminate existing item [delete].

▪ Time & space efficiency are desirable.

A solution to this problem is a container.

In a generic container, client code can specify the value type.

Note the three primary
single-item operations:
retrieve, insert, delete.
We will see these over &
over again.

4

2024-11-08 CS 311 Fall 2024

Review
Binary Trees — Definitions [1/2]

A Binary Tree consists of a set T of nodes so that either:

▪ T is empty (no nodes), or

▪ T consists of a node r, the root, and two subtrees of r, each of
which is a Binary Tree:

▪ the left subtree, and

▪ the right subtree.

We make a strong distinction between left and right subtrees.
Sometimes we use them for very different things.

a

b

a

b

Different Binary Trees

5

Review
Binary Trees — Definitions [2/2]

Full Binary Tree

▪ Leaves all lie in the same level.
All other nodes have two children each.

Complete Binary Tree

▪ All levels above the bottom are full.
Bottom level is filled left-to-right.

▪ Importance. Nodes are added in a fixed
order. Has a useful array representation.

Strongly Balanced Binary Tree

▪ For each node, the left and right subtrees
have heights that differ by at most 1. (An
empty Binary Tree has height -1.)

▪ Importance. Height of entire tree is small.
This can allow for fast operations.

Every full Binary Tree is complete.

Every complete Binary Tree is strongly balanced.

2024-11-08 CS 311 Fall 2024

All three of these
concepts can be
useful notions of

“bushy”.

Particularly important today!

6

2024-11-08 CS 311 Fall 2024

Review
Binary Trees — Implementation

A common way to implement a Binary
Tree is to use separately allocated
nodes referred to by pointers.

▪ Each node has a data item and two
child pointers: left & right.

▪ A pointer is null if there is no child.

▪ There might also be a pointer to the
parent—if that would be helpful.

A complete Binary Tree can be
implemented by simply putting the
items in an array and keeping track
of the size of the tree.

This implementation is very efficient
(time & space), but it is only useful
when the tree will stay complete.

3

21

527

head

Logical Structure

0

10 20

70 80

30

90

40 50 60

0 10 20 30 40 50 60 70 80 90

Physical Structure

7

2024-11-08 CS 311 Fall 2024

Review
Binary Search Trees — What a Binary Search Tree Is

A Binary Search Tree is a Binary Tree
in which each node contains a single
data item, which includes a key, and:

▪ Descendants holding keys less than
the node’s are in its left subtree.

▪ Descendants holding keys greater
than the node’s are in its right subtree.

In other words, an inorder traversal
gives keys in sorted order.

Items ≤ x Items ≥ x

Must be ≤ x

13 30

4

Inorder traversal:
4 10 13 16 30

x

16

10

8

Review
Binary Search Trees — Operations

Algorithms for the BST operations:

▪ Traverse

▪ Recursively traverse left subtree of root.

▪ Visit the root.

▪ Recursively traverse right subtree of root.

▪ Retrieve

▪ Search. Start at the root. Go down, left or right as appropriate, until
either the given key or an empty spot is found.

▪ Insert

▪ Search, then …

▪ Put the value in the spot where it should go.

▪ Delete

▪ Search, then …

▪ Check the number of children the node has:

▪ 0. Delete node.

▪ 1. Replace subtree rooted at node with subtree rooted at child.

▪ 2. Copy data from (or swap data with) inorder successor. Proceed as above.

2024-11-08 CS 311 Fall 2024

13 30

4

Inorder
Traversal

16

10

9

Review
Binary Search Trees — Operations: Try It! [1/2]

Do delete key 19 on the Binary Search Tree shown. Draw the
resulting tree.

Answer on next slide.

2024-11-08 CS 311 Fall 2024

28

473012 58

5119

32

10

Review
Binary Search Trees — Operations: Try It! [2/2]

Do delete key 19 on the Binary Search Tree shown. Draw the
resulting tree.

Procedure

▪ The 19 node is 2-children case.

▪ Find the inorder successor: the 28 node.

▪ Copy/swap 28 to the 19 node.

▪ Delete the old 28 node. This is 0-child case.

▪ So just remove the old 28 node.

2024-11-08 CS 311 Fall 2024

28 ?

473012 58 473012 58 473012 58

5119 5128 5128

32 32 32

11

Review
Binary Search Trees — Efficiency

The efficiency of BST operations depends on the tree’s height.

A strongly balanced Binary Search Tree has logarithmic height, but
the insert & delete operations do not keep the height small.

So Binary Search Trees have poor worst-case performance.

But they have good performance:

▪ On average, for random data.

▪ If strongly balanced. But if we allow insert/delete operations, then
we need an efficient way to make a tree stay strongly balanced.

Can we efficiently keep a Binary Search Tree strongly balanced?

2024-11-08 CS 311 Fall 2024

BST: strongly

balanced OR
average case

Sorted Array BST:

worst case

Retrieve Logarithmic Logarithmic Linear

Insert Logarithmic Linear Linear

Delete Logarithmic Linear Linear

Because we
do not (yet?)
know how to
keep a tree
strongly
balanced, this
is not (yet?)
practical.

12

Unit Overview
Tables & Priority Queues

Topics

▪ Introduction to Tables

▪ Priority Queues

▪ Binary Heap Algorithms

▪ Heaps & Priority Queues in the C++ STL

▪ 2-3 Trees

▪ Other self-balancing search trees

▪ Hash Tables

▪ Prefix Trees

▪ Tables in the C++ STL & Elsewhere

2024-11-08 CS 311 Fall 2024

13

2024-11-08 CS 311 Fall 2024

Review
Introduction to Tables [1/4]

Our ultimate value-oriented ADT is Table.

Three primary single-item operations:

▪ Retrieve (by key).

▪ Insert (item—commonly a key-value pair).

▪ Delete (by key).

What do we use a Table for?

▪ Data accessed by a key field.

▪ For example, any kind of data that we look up using an ID.

▪ Set data.

▪ Each item has only a key, with no associated value.

▪ Fundamentally, the only question is which keys lie in the dataset.

▪ Array-like datasets whose indices are not nonnegative integers.
▪ arr2["hello"] = 3;

▪ Array-like datasets that are sparse (or not sparse).
▪ arr[6] = 1; arr[1000000000] = 2;

Table

Key Value

12 Ed

04 Peg

09 Ann

14

2024-11-08 CS 311 Fall 2024

Review
Introduction to Tables [2/4]

What are possible Table implementations?

▪ A Sequence holding key-value pairs.

▪ Array-based or Linked-List-based.

▪ Sorted or unsorted.

▪ A Binary Search Tree holding key-value pairs.

▪ Implemented using a pointer-based Binary Tree.

How efficient are these Table implementations?

Array
Implementations

Linked List
Implementations

(4, Peg) (9, Ann) (12, Ed) (4, Peg) (9, Ann) (12, Ed)

(12, Ed) (4, Peg) (9, Ann) (12, Ed) (4, Peg) (9, Ann)

Unsorted Unsorted

Sorted by Key Sorted by Key

Table

Key Value

12 Ed

04 Peg

09 Ann

(4, Peg) (12, Ed)

Binary Search Tree
Implementation

(9, Ann)

15

2024-11-08 CS 311 Fall 2024

Review
Introduction to Tables [3/4]

Q. How efficient are these Table implementations?

A. Not very efficient at all.

In particular, the ones we know how to do all have a linear-time
delete operation.

Above, we allow multiple equivalent keys.

*We do not (yet?) know how to ensure that the tree will stay strongly balanced,

unless we restrict ourselves to read-only operations (no insert, delete).

**Constant time if we have pre-allocated enough storage.

Sorted
Array

Unsorted
Array

Sorted
Linked List

Unsorted
Linked List

Binary
Search Tree

Strongly
Balanced*
BST?

Retrieve Logarithmic Linear Linear Linear Linear Logarithmic

Insert Linear Linear/
amortized
constant**

Linear Constant Linear Logarithmic

Delete Linear Linear Linear Linear Linear Logarithmic

16

2024-11-08 CS 311 Fall 2024

Review
Introduction to Tables [4/4]

All the Table implementations we have thought of are inefficient.

What can we do about this? Here are three ideas.

Idea #1: Restricted Tables

▪ Only allow retrieve/delete on the greatest key.

▪ In practice: Priority Queues

Idea #2: Keep a tree balanced

▪ In practice: Self-balancing search trees (2-3 Trees, etc.)

Idea #3: Magic functions

▪ Use an unsorted array. Each item can be a key-value pair or empty.

▪ A magic function tells the index where a given key is stored.

▪ Retrieve/insert/delete in constant time? No, but still a useful idea.

▪ In practice: Hash Tables

17

Unit Overview
Tables & Priority Queues

Major Topics

▪ Introduction to Tables

▪ Priority Queues

▪ Binary Heap Algorithms

▪ Heaps & Priority Queues in the C++ STL

▪ 2-3 Trees

▪ Other self-balancing search trees

▪ Hash Tables

▪ Prefix Trees

▪ Tables in the C++ STL & Elsewhere

2024-11-08 CS 311 Fall 2024

Idea #1: Restricted Table

Idea #2: Keep a tree balanced

Idea #3: Magic functions

Several lousy implementations

A special-purpose
implementation: “the Radix
Sort of Table implementations”

18

Priority Queues

2024-11-08 CS 311 Fall 2024 19

2024-11-08 CS 311 Fall 2024

Priority Queues
What a Priority Queue Is — Introduction

Now we look at the first of our three ideas: restricting the Table
operations, in order to gain efficiency.

Our restricted-Table ADT is called Priority Queue.

▪ This has almost the same operations as Queue.

▪ The difference is that the item that is retrieved or deleted is the one
with the greatest key.

▪ So items are not removed in the order they were inserted, but
rather in order of priority: greatest key to least key.

Despite the name, a Priority Queue is not a Queue!

20

2024-11-08 CS 311 Fall 2024

Priority Queues
What a Priority Queue Is — ADT

Priority Queue has the following data and operations.

Data

▪ A collection of items, each of which has a key.

Operations

▪ getFront. Look at item with greatest key.

▪ insert. Add a given item.

▪ delete. Remove item with greatest key.

▪ And the usual:

▪ create, destroy, copy.

▪ isEmpty.

▪ size.

So we can insert anything, but there is only one key that we can
retrieve (getFront) or delete. Thus, Priority Queue is a restricted
Table, just as Stack & Queue are restricted Sequences.

Three single-item
operations, yet
again.

21

Priority Queues
Applications

A Priority Queue is useful when we have items to process, and
some are better (lower cost?) or more urgent than others.

Near the end of the semester, we will look at an application of a
Priority Queue, as part of a method to find a minimum spanning
tree in a graph. This involves prioritizing lower-cost items.

A Priority Queue can be used to sort: insert all items, then
getFront/delete all items. The items are removed from greatest
key to least key.

This leads to a fast sort called Heap Sort (recall: the usual fall-back
algorithm in Introsort).

A Priority Queue can also do variations on sorting.

▪ To find the k greatest items in a list: insert them all into a Priority
Queue, then do getFront/delete k times.

▪ A Priority Queue can hold that a dataset is modified during sorting.

2024-11-08 CS 311 Fall 2024 22

2024-11-08 CS 311 Fall 2024

Priority Queues
Implementation

We can implement a Priority Queue using any of the methods we
have discussed for implementing a Table.

And they are all still just as dissatisfying.

The most interesting thing about Priority Queues is their most
common implementation: a structure called a Binary Heap. We
discuss this next.

23

Binary Heap Algorithms

2024-11-08 CS 311 Fall 2024 24

2024-11-08 CS 311 Fall 2024

Binary Heap Algorithms
What a Binary Heap Is — Definition

A Binary Heap (or just Heap) is a complete Binary Tree in which

▪ each node contains a single data item, which includes a key,
and

▪ each node’s key is ≥ the keys in
its children, if any.

Notes

▪ There are no required order relationships between siblings.

▪ The above is a Maxheap. If we reverse the order, so that a node’s
key is ≤ the keys in its children, then we get a Minheap, which
works just the same in all other ways.

▪ You may see another meaning of “heap”: the area of memory used
for dynamic allocation. This usage is unrelated to that above.

56

50 25

1 3

5

10

22 25 11

3 12

25

2024-11-08 CS 311 Fall 2024

Binary Heap Algorithms
What a Binary Heap Is — Try It! [1/2]

Which of the following are Binary Heaps?

Answers on next slide.

21

8

15 3

28

3 10

4

10

5 2

7

10

10 10

10

10

10

C

BA

D

1

26

26

2024-11-08 CS 311 Fall 2024

Binary Heap Algorithms
What a Binary Heap Is — Try It! [2/2]

Which of the following are Binary Heaps?

Answers

21

8

15 3

28

3 10

4

10

5 2

7

10

10 10

10

10

10

C

BA

D

1

26

This is a Binary Tree,
but it is not a
complete Binary Tree.

This is a complete Binary
Tree, but it does not have
the Heap order property,
since 4 < 10.

27

2024-11-08 CS 311 Fall 2024

Binary Heap Algorithms
What a Binary Heap Is — Refresher: Complete Binary Trees

Recall the array implementation of a complete Binary Tree:

▪ Put the nodes in an array, in the order in which they would be
added to a complete Binary Tree.

▪ Store only the array of data items and the number of nodes.

No stored pointers are required.

We can navigate around the tree (find the root, find children, find
the parent, determine whether each of these exists) by doing
arithmetic with array indices.

0 10 20 30 40 50 60 70 80 90

Logical Structure
Physical Structure

0

10 20

70 80

30

90

40 50 60

This is an example of a complete Binary Tree.
It is not a Heap!

28

2024-11-08 CS 311 Fall 2024

Binary Heap Algorithms
What a Binary Heap Is — Implementation

The standard implementation of a Binary Heap uses this array-
based complete Binary Tree.

In practice, we use “Heap” to mean a Binary Heap
implemented using this array representation.

In order to base a Priority Queue on a Heap, we need to know how
to perform the Priority Queue operations with a Heap.

Operation getFront is easy: look at the root item.

Next we consider insert & delete.

Logical Structure

56 50 25 5 22 25 11 1 3 10 3 12

Physical Structure

56

50 25

1 3

5

10

22 25 11

3 12

This is a Heap.

29

2024-11-08 CS 311 Fall 2024

Binary Heap Algorithms
Primary Operations — Insert

In a Priority Queue, we can insert any value. (How about 32.)

In a complete Binary Tree, we can only add a new node at the end.

So add the the new item in a new node at the end.

But now we may not have a Heap.

Solution: sift-up. New value greater than parent? Swap & repeat.

56

50 25

1 3

5

10

22 11

3

56

50

1 3

5

10

22 11

3

56

50 32

1 3

5

10

22 11

3

12 32 12 25

12 25

Done

Ick!

25

25

25

32

Sift-up does
something like a

single pass of
Bubble Sort on

the path from the
leaf to the root.

30

2024-11-08 CS 311 Fall 2024

Binary Heap Algorithms
Primary Operations — Delete [1/2]

In a Priority Queue, we can delete the item with the greatest key.

In a Maxheap, this is the root item. How do we delete the root
item, while maintaining the Heap properties?

▪ We cannot delete the root node—unless it is the only node.

▪ The Heap will have one less item, so the last node must go away.

▪ But the last item is not going away.

▪ So, put the last node’s item in the root node; delete the last node.

▪ Do this by swapping items—which has other advantages, as we will see.

We have a problem again: this is no longer a Heap. How to fix it?

12

50 25

1 3

5

10

22 25 11

3

56

50 25

1 3

5

10

22 25 11

3 12

Ick!

31

2024-11-08 CS 311 Fall 2024

Binary Heap Algorithms
Primary Operations — Delete [2/2]

After swapping items in root & last node, and then removing the
last node, we may no longer have a Heap.

Solution: sift-down the new root item. Smaller than a child? Swap
with larger child & repeat.

12

50 25

1 3

5

10

22 25 11

3

50

12 25

1 3

5

10

22 25 11

3

50

22 25

1 3

5

10

12 25 11

3

Done

Ick!

In a Binary Heap,
we always rearrange
items by swapping.

32

2024-11-08 CS 311 Fall 2024

Binary Heap Algorithms
Primary Operations — Try It! [1/2]

Do Heap delete on the Binary Heap shown below. Draw the
resulting Binary Heap, as a tree.

Answer on next slide.

20

4 2

15

1

12

8

33

2024-11-08 CS 311 Fall 2024

Binary Heap Algorithms
Primary Operations — Try It! [2/2]

Do Heap delete on the Binary Heap shown below. Draw the
resulting Binary Heap, as a tree.

Answer

Procedure

▪ We are deleting the root item (20).

▪ Swap the root item with the item in the last node (8), and then
delete the last node.

▪ Sift-down the new root item (8).

20

4 2

15

1

12

8

8

4 2

15

1

12

20

15

4 2

8

1

12

34

2024-11-08 CS 311 Fall 2024

Binary Heap Algorithms
Primary Operations — Using an Array

Heap insert and delete are usually given a random-access range.
The item to insert or delete is the last item; the rest is a Heap.

▪ Action of Heap insert:

▪ Action of Heap delete:

Note that Heap algorithms can do all modifications using swap.
This usually allows for both speed and (exception) safety.

Given Heap Item to insert New Heap

Given Heap Item deletedNew Heap

This is where we want the item
to be, initially (right?).

This is where the
initial swap puts
the item (right?).

35

2024-11-08 CS 311 Fall 2024

Binary Heap Algorithms
Primary Operations — Efficiency

What is the order of the Priority Queue operations, if we use a
Binary Heap in the array representation?

▪ getFront

▪ Constant time.

▪ insert

▪ Linear time in general, due to possible reallocate-and-copy.

▪ Logarithmic time, if we can be sure that no reallocation is required.

▪ That is, assuming the array is large enough to hold the new item. The way
that Heaps are often used guarantees that this is the case.

▪ The number of operations is roughly the height of the tree. Since the tree is
strongly balanced, the height is O(log n).

▪ delete

▪ Logarithmic time.

▪ There is no reallocation. See the comment on height under insert.

So a Heap is a good basis for implementing a Priority Queue.

Better than linear time!

We have not seen this before,
for a delete by key.

36

Binary Heap Algorithms
Primary Operations — CODE

TO DO

▪ Write the Heap insert algorithm.

▪ Prototype is shown below.

▪ The item to be inserted is the final item in the given range.

▪ All other items should form a Heap already.

▪ Write other Heap algorithms as time permits.

// Requirements on types:

// RAIter is a random-access iterator type.

template<typename RAIter>

void heapInsert(RAIter first, RAIter last);

2024-11-08 CS 311 Fall 2024

Done. See heap_algs.hpp.

The other Heap algorithms

have also been written.

See heap_algs_main.cpp for a

program that uses this header.

37

Binary Heap Algorithms
TO BE CONTINUED …

Binary Heap Algorithms will be continued next time.

2024-11-08 CS 311 Fall 2024 38

	Slide 1: Priority Queues Binary Heap Algorithms
	Slide 2: Unit Overview The Basics of Trees
	Slide 3
	Slide 4: Review Where Are We? — The Big Challenge
	Slide 5: Review Binary Trees — Definitions [1/2]
	Slide 6: Review Binary Trees — Definitions [2/2]
	Slide 7: Review Binary Trees — Implementation
	Slide 8: Review Binary Search Trees — What a Binary Search Tree Is
	Slide 9: Review Binary Search Trees — Operations
	Slide 10: Review Binary Search Trees — Operations: Try It! [1/2]
	Slide 11: Review Binary Search Trees — Operations: Try It! [2/2]
	Slide 12: Review Binary Search Trees — Efficiency
	Slide 13: Unit Overview Tables & Priority Queues
	Slide 14: Review Introduction to Tables [1/4]
	Slide 15: Review Introduction to Tables [2/4]
	Slide 16: Review Introduction to Tables [3/4]
	Slide 17: Review Introduction to Tables [4/4]
	Slide 18: Unit Overview Tables & Priority Queues
	Slide 19
	Slide 20: Priority Queues What a Priority Queue Is — Introduction
	Slide 21: Priority Queues What a Priority Queue Is — ADT
	Slide 22: Priority Queues Applications
	Slide 23: Priority Queues Implementation
	Slide 24
	Slide 25: Binary Heap Algorithms What a Binary Heap Is — Definition
	Slide 26: Binary Heap Algorithms What a Binary Heap Is — Try It! [1/2]
	Slide 27: Binary Heap Algorithms What a Binary Heap Is — Try It! [2/2]
	Slide 28: Binary Heap Algorithms What a Binary Heap Is — Refresher: Complete Binary Trees
	Slide 29: Binary Heap Algorithms What a Binary Heap Is — Implementation
	Slide 30: Binary Heap Algorithms Primary Operations — Insert
	Slide 31: Binary Heap Algorithms Primary Operations — Delete [1/2]
	Slide 32: Binary Heap Algorithms Primary Operations — Delete [2/2]
	Slide 33: Binary Heap Algorithms Primary Operations — Try It! [1/2]
	Slide 34: Binary Heap Algorithms Primary Operations — Try It! [2/2]
	Slide 35: Binary Heap Algorithms Primary Operations — Using an Array
	Slide 36: Binary Heap Algorithms Primary Operations — Efficiency
	Slide 37: Binary Heap Algorithms Primary Operations — CODE
	Slide 38: Binary Heap Algorithms TO BE CONTINUED …

