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Unit Overview
The Basics of Trees

Topics

▪ Introduction to Trees

▪ Binary Trees

▪ Binary Search Trees
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Review
Where Are We? — The Big Challenge

Our problem for most of the rest of the semester:

▪ Store: A collection of data items, all of the same type.

▪ Things we need to be able to do:

▪ Access items [single item: retrieve/find, all items: traverse].

▪ Add new item [insert].

▪ Eliminate existing item [delete].

▪ Time & space efficiency are desirable.

A solution to this problem is a container.

In a generic container, client code can specify the value type.

Note the three primary 
single-item operations: 
retrieve, insert, delete. 
We will see these over & 
over again.
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Review
Introduction to Trees

Informally, we might categorize trees as “bushy” or “stringy”.

Bushy trees (suitably defined) have short paths
between vertices.

Suppose we can organize a tree so that some
operation only works with a single path between
vertices. If the tree is bushy, then the operation
is fast.

“Bushy” Tree “Stringy” Tree

This is the main reason 
why trees are useful in 
data structure design.
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Review
Binary Trees — Definitions [1/2]

A Binary Tree consists of a set T of nodes so that either:

▪ T is empty (no nodes), or

▪ T consists of a node r, the root, and two subtrees of r, each of 
which is a Binary Tree:

▪ the left subtree, and

▪ the right subtree.

We make a strong distinction between left and right subtrees. 
Sometimes we use them for very different things.

The left and/or right subtree of a vertex may be empty.

a

b

a

b

Different Binary Trees
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Review
Binary Trees — Definitions [2/2]

Full Binary Tree 

▪ Leaves all lie in the same level.
All other nodes have two children each.

Complete Binary Tree

▪ All levels above the bottom are full.
Bottom level is filled left-to-right.

▪ Importance. Nodes are added in a fixed
order. Has a useful array representation.

Strongly Balanced Binary Tree

▪ For each node, the left and right subtrees
have heights that differ by at most 1. (An
empty Binary Tree has height -1.)

▪ Importance. Height of entire tree is small.
This can allow for fast operations.

Every full Binary Tree is complete.

Every complete Binary Tree is strongly balanced.
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All three of these 
concepts can be 
useful notions of 

“bushy”.
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Review
Binary Trees — Traversals [1/3]

To traverse a Binary Tree means to visit each node in some order.

Standard Binary Tree traversals: preorder, inorder, postorder. The 
name tells where the root goes: before, between, after.

Preorder traversal:

▪ Root.

▪ Preorder traversal of left subtree.

▪ Preorder traversal of right subtree.

Inorder traversal:

▪ Inorder traversal of left subtree.

▪ Root.

▪ Inorder traversal of right subtree.

Postorder traversal.

▪ Postorder traversal of left subtree.

▪ Postorder traversal of right subtree.

▪ Root.
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4 5

Preorder traversal: 1 2 4 3 5

Inorder traversal: 2 4 1 3 5
Postorder traversal: 4 2 5 3 1

32

1
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Review
Binary Trees — Traversals [2/3] (Try It!)

Write preorder, inorder, and postorder traversals of the Binary 
Tree shown below.

Answers on next slide.

B

LH

TQ

A

F
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Review
Binary Trees — Traversals [3/3] (Try It!)

Write preorder, inorder, and postorder traversals of the Binary 
Tree shown below.

Answers

Preorder: A B H Q T L F

Inorder: Q H T B L A F

Postorder: Q T H L B F A

B

LH

TQ

A

F
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Review
Binary Trees — Implementation

A common way to implement a Binary 
Tree is to use separately allocated 
nodes referred to by pointers.

▪ Each node has a data item and two 
child pointers: left & right.

▪ A pointer is null if there is no child.

▪ There might also be a pointer to the 
parent—if that would be helpful.

A complete Binary Tree can be 
implemented by simply putting the 
items in an array and keeping track 
of the size of the tree.

This implementation is very efficient 
(time & space), but it is only useful 
when the tree will stay complete.

3

21

527

head

Logical Structure

0

10 20

70 80
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Physical Structure

11



2024-11-06 CS 311 Fall 2024

Review
Binary Search Trees — What a Binary Search Tree Is

A Binary Search Tree is a Binary Tree
in which each node contains a single
data item, which includes a key, and:

▪ Descendants holding keys less than
the node’s are in its left subtree.

▪ Descendants holding keys greater
than the node’s are in its right subtree.

In other words, an inorder traversal
gives keys in sorted order.

This is another value-oriented way to
deal with data (while Binary
Trees are position-oriented).

Binary Search Trees and SortedSequences
are examples of sorted containers.

Items ≤ x Items ≥ x

Must be ≤ x

13 30

4

Inorder traversal: 
4  10  13  16  30

x

16

10
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Review
Binary Search Trees — Operations

Algorithms for the BST operations:

▪ Traverse

▪ Recursively traverse left subtree of root.

▪ Visit the root.

▪ Recursively traverse right subtree of root.

▪ Retrieve

▪ Search. Start at the root. Go down, left or right as appropriate, until 
either the given key or an empty spot is found.

▪ Insert

▪ Search, then …

▪ Put the value in the spot where it should go.

▪ Delete

▪ To be covered
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13 30

4

Inorder 
Traversal

16

10
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Binary Search Trees
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continued
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Binary Search Trees
Operations — Delete [1/4]

Delete is the most complex of the three single-item operations.

We will assume the key to be deleted is present in the tree. 
Otherwise the specification should tell us what to do.

Begin by finding the node holding the key to be deleted (search).

Then proceed to one of three cases, depending
on how many children this node has:

▪ No children (leaf).

▪ One child.

▪ Two children.

The no-children (leaf) case is easy:
Just remove the node.

Example. Delete key 28.

13

22

4

28

25

20 42

30

16

10
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Binary Search Trees
Operations — Delete [2/4]

If the node to remove has exactly one child, replace the subtree 
rooted at the node with the subtree rooted at its child. (This is 
generally a constant-time operation, once the node is found.)

Example. Delete key 20.

=

28222822

28222525

25 42424220

13 3013 3013 30

Redraw

164164164

101010
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Binary Search Trees
Operations — Delete [3/4]

The trickiest case is when the node to delete has two children.

▪ Replace its data with data in its inorder successor (copy or swap).

▪ Delete the inorder successor, which must have at most one child.

The inorder successor is the node that comes next in an inorder 
traversal, that is, the leftmost node in the node’s right subtree.

To find the inorder successor of a node with two children:

▪ Go to the right child.

▪ Then left child, left child, left child, … until we reach a node that has 
no left child.

The inorder 
successor of 
this node is 
this node.This is why the 

inorder successor 
must have at 
most one child.
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Binary Search Trees
Operations — Delete [4/4]

When the node to delete has two children:

▪ Replace its data with data in its inorder successor (copy or swap).

▪ Delete the inorder successor, which must have at most one child.

Example. Delete key 16.

As on
earlier slide

28222822

2525 2822

4220 42 ? 25 42

13 30 13 3013 30

164 204204

10 1010
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Binary Search Trees
Operations — Summary & Thoughts

Algorithms for the three primary single-item BST operations:

▪ Retrieve

▪ Search. Start at the root. Go down, left or right as appropriate, until 
either the given key or an empty spot is found.

▪ Insert

▪ Search, then …

▪ Put the value in the spot where it should go.

▪ Delete

▪ Search, then …

▪ Check the number of children the node has:

▪ 0. Delete node.

▪ 1. Replace subtree rooted at node with subtree rooted at child.

▪ 2. Copy data from (or swap data with) inorder successor. Proceed as above.

All three operations, in the worst case, require a number of steps 
that is something like the height of the tree.

It turns out that the height of the tree is small (so all three 
operations are fast) if the tree is strongly balanced.
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Binary Search Trees
Operations — Try It! [1/2]

Do delete key 58 on the Binary Search Tree shown. Draw the 
resulting tree.

Answer on next slide.
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7256

7523

8111

58
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Binary Search Trees
Operations — Try It! [2/2]

Do delete key 58 on the Binary Search Tree shown. Draw the 
resulting tree.

Procedure

▪ The 58 node is 2-children case.

▪ Find the inorder successor: the 72 node.

▪ Copy/swap 72 to the root node.

▪ Delete the old 72 node. This is 1-child case.

▪ Replace the subtree rooted at the old 72 node by the subtree rooted 
at its child (75).
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23

7556

8111

72

7523

7256

8111

58

7523

?56

8111

72
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Binary Search Trees
Efficiency — Introduction

BST retrieve, insert, and delete follow pointers down from the root.

So these operations look at only a single path between vertices.

But can we make/keep a BST “bushy”?

Our notion of “bushy”, for now, is strongly balanced.

The number of steps required for a BST single-item
operation is something like the height of the tree.

Worst case: height = # of nodes – 1. 

But what about when the tree is strongly balanced?

So: given the size of a strongly balanced Binary Tree,
how large can its height be?

22
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Binary Search Trees
Efficiency — Height of a Strongly Balanced Binary Tree [1/2]

Given the size of a strongly balanced Binary Tree, how large can its 
height be?

In order to answer this, first look at a reverse question: Given the 
height of a strongly balanced Binary Tree, how small can its size 
be? That is, what is the minimum size of a strongly balanced 
Binary Tree with height h?

Answer. Apparently, Fh+3 – 1, for h = 0, 1, 2, …

▪ Fk is Fibonacci number k. F0 = 0, F1 = 1, F2 = 1, F2 = 2, etc.

It is not too hard to prove this using mathematical induction (but 
we will not).
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Binary Search Trees
Efficiency — Height of a Strongly Balanced Binary Tree [2/2]

Back to the original question: Given the size of a strongly balanced 
Binary Tree, how large can its height be?

▪ We know that, if we have a strongly balanced Binary Tree with 
height h and size n, then n ≥ Fh+3 – 1.

▪ Fact. Let φ =
1+ 5

2
. Then Fk ≈

φk

5
 (as in fibo_formula.cpp).

▪ Thus, roughly: n ≥
φh+3

5
. 

▪ Solving for h, we obtain, roughly: h ≤ logφ 5n  – 3. 

▪ We conclude that, for a strongly balanced Binary Tree, h is O(log n).

Even better, the height of a Binary Search Tree is, with high 
probability, O(log n) for random data. But we will not verify this.
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Binary Search Trees
Efficiency — Order of Operations

Order of the BST operations, using the algorithms discussed:

Retrieve

▪ Linear time.

▪ Worst case is roughly the height.

▪ If strongly balanced: logarithmic time.
But if we insert & delete, then it might

not stay strongly balanced.

▪ Logarithmic time on average for random data.

▪ Retrieve does not modify the tree. If that is all we do, we
might want to create a strongly balanced tree beforehand.

Insert

▪ Linear time (but see the second point under Retrieve).

Delete

▪ Linear time (but see the second point under Retrieve).

Traverse: inorder traversal

▪ Linear time.
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Binary Search Trees
Efficiency — A Problem

A BST has good average performance; retrieve, insert, and delete 
are logarithmic time for average data.

But in the worst case, a BST is worse than a sorted array.

Can we efficiently keep a Binary Search Tree strongly balanced, 
while allowing for insert & delete operations?

Keep this question in mind. We will eventually answer it.
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BST: strongly 

balanced OR 
average case

Sorted Array BST:

worst case

Retrieve Logarithmic Logarithmic Linear

Insert Logarithmic Linear Linear

Delete Logarithmic Linear Linear
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Unit Overview
Tables & Priority Queues

Next we begin a unit on ADTs Table and Priority Queue and their 
implementations.

Topics

▪ Introduction to Tables

▪ Priority Queues

▪ Binary Heap Algorithms

▪ Heaps & Priority Queues in the C++ STL

▪ 2-3 Trees

▪ Other self-balancing search trees

▪ Hash Tables

▪ Prefix Trees

▪ Tables in the C++ STL and Elsewhere

This will be the last big unit in the class. After this, we look briefly 
at other topics: external data, graph algorithms.
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Introduction to Tables
Value-Oriented ADTs — Idea

Position-Oriented ADT

▪ Get item based on where 
it is stored.

▪ Organize data according to 
where the client wants it.

Examples

▪ Sequence

▪ Stack

▪ Queue

▪ Binary Tree

Value-Oriented ADT

▪ Get item based on its value—
or part of the value: key-
based look-up.

▪ Organize data for greatest 
efficiency.

Examples

▪ SortedSequence

▪ Binary Search Tree

Client code often only needs 
efficiency, so does not need 
to know how items are 
organized internally.

Can we do better here?
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Introduction to Tables
Value-Oriented ADTs — Table

Table is a general value-oriented ADT, not tied to any particular 
implementation.

Data

▪ A collection of items, each with a key.

Operations

▪ Single-Item Operations

▪ retrieve by key.

▪ insert item.

▪ delete by key.

▪ Access All Data

▪ traverse.

▪ The Usual

▪ create, destroy, copy.

▪ isEmpty.

▪ size.

Table

Key Value

12 Ed

04 Peg

09 AnnOnce again, three 
single-item operations.
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Introduction to Tables
Value-Oriented ADTs — Issues [1/2]

Allow multiple items with the same key?

▪ It depends on the requirements of the client.

Require traverse to visit items in sorted order?

▪ Maybe. This is inefficient in some implementations.

Allow modification of data while it is in the Table?

▪ Modifying a key can be problematic, since an item is generally 
located according to its key. Changing the key would require 
moving the item. Another issue involves disallowing duplicate keys.

▪ Modifying the associate value is typically not a problem.

Have a separate interface in which the key is the entire value?

▪ Sure. Call it Set.

Conclusion

▪ There is no single best interface to a Table. But they are all similar.

▪ Therefore, we will be a little vague about exactly what a Table is.

2024-11-06 CS 311 Fall 2024

Table

Key Value

12 Ed

04 Peg

09 Ann
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Introduction to Tables
Value-Oriented ADTs — Issues [2/2]

We have looked at restricted versions of a position-oriented ADT:

▪ Sequence allows retrieval/deletion at any position.

▪ Stack & Queue only allow retrieval/deletion at a single position—the 
highest (or lowest) position.

What about doing the same with value-oriented ADTs?

▪ Table allows retrieval/deletion using any key.

▪ Is there a useful ADT that only allows retrieval/deletion of the item 
with the highest key?

Yes! We call it Priority Queue. (More on this later.)
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Introduction to Tables
Applications

What do we use a Table for?

▪ Data accessed by a key field. For example:

▪ Customers accessed by phone number.

▪ Students accessed by student ID number.

▪ Any other kind of data with an ID code.

▪ Set data.

▪ Each item has only a key, with no associated value.

▪ Fundamentally, the only questions we can answer concern which keys lie 

in the dataset.

▪ Array-like datasets whose indices are not nonnegative integers.
▪ arr2["hello"] = 3;

▪ Array-like datasets that are sparse*.
▪ arr[6] = 1; arr[1000000000] = 2;

*Or not sparse. Sequences can be stored as Tables. Indices become keys.
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Introduction to Tables
Implementation — Possibilities [1/3]

What are possible Table implementations?

▪ A Sequence holding key-value pairs.

▪ Array-based or Linked-List-based.

▪ Sorted or unsorted.

▪ A Binary Search Tree holding key-value pairs.

▪ Implemented using a pointer-based Binary Tree.

How efficient are these implementations?

(4, Peg) (12, Ed)

Array 
Implementations

Linked List 
Implementations

Binary Search Tree 
Implementation

(4, Peg) (9, Ann) (12, Ed) (4, Peg) (9, Ann) (12, Ed)

(12, Ed) (4, Peg) (9, Ann) (12, Ed) (4, Peg) (9, Ann)

Unsorted Unsorted

std::deque?
In this context, 
it is just a slow 
array.

Table

Key Value

12 Ed

04 Peg

09 Ann

Sorted by Key Sorted by Key

(9, Ann)
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Introduction to Tables
Implementation — Possibilities [2/3]

Find the order of Table operations, for each implementation.

▪ Allow multiple equivalent keys, where it matters.

▪ If multiple equivalent keys are not allowed, then insert must first 
do a search (much the same as retrieve). The order of insert 
would thus be the order of retrieve+insert shown below.

*We do not (yet?) know how to ensure that the tree will stay strongly balanced, 
unless we restrict ourselves to read-only operations (no insert, delete).

**Constant time if we have pre-allocated enough storage.

Sorted
Array

Unsorted
Array

Sorted
Linked List

Unsorted
Linked List

Binary
Search Tree

Strongly
Balanced*
BST?

Retrieve Logarithmic Linear Linear Linear Linear Logarithmic

Insert Linear Linear/
amortized
constant**

Linear Constant Linear Logarithmic

Delete Linear Linear Linear Linear Linear Logarithmic

Ick!
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Introduction to Tables
Implementation — Possibilities [3/3]

Tables can be implemented in many ways. Different 
implementations are appropriate in different circumstances.

In some situations, the amortized constant-time insertion for an 
unsorted array and the logarithmic-time retrieve for a sorted 
array can be combined!

▪ Insert all data into an unsorted array, sort the array, then use 
Binary Search to retrieve data.

▪ This is a good way to handle Table data with separate filling & 
searching phases—and little or no deletion.

We will cover some sophisticated Table implementations. But 
remember that sometimes a simple technique is best.
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Introduction to Tables
Implementation — Better Ideas? [1/3]

Idea #1. Restricted Table

▪ Perhaps we can do better if we do not implement a Table in full 
generality.

▪ Do not allow retrieve & delete on all keys. Instead allow these 
operations only on the greatest key.

In practice: Priority Queue

Sorted
Array

Unsorted
Array

Sorted
Linked List

Unsorted
Linked List

Binary
Search Tree

Strongly
Balanced
(how?) BST

Retrieve Logarithmic Linear Linear Linear Linear Logarithmic

Insert Linear Constant-ish Linear Constant Linear Logarithmic

Delete Linear Linear Linear Linear Linear Logarithmic
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Introduction to Tables
Implementation — Better Ideas? [2/3]

Idea #2. Keep a tree balanced (& bushy)

▪ Can we keep a Binary Search Tree strongly balanced—efficiently?

▪ Perhaps we could loosen the strongly balanced requirement?
What we really need is small height.

▪ Loosen the binary requirement, too?

In practice: Self-balancing search trees

▪ 2-3 Tree & 2-3-4 Tree, Red-Black Tree

▪ AVL Tree

▪ B-Tree & variations (B+ Tree, etc.)

Sorted
Array

Unsorted
Array

Sorted
Linked List

Unsorted
Linked List

Binary
Search Tree

Strongly
Balanced
(how?) BST

Retrieve Logarithmic Linear Linear Linear Linear Logarithmic

Insert Linear Constant-ish Linear Constant Linear Logarithmic

Delete Linear Linear Linear Linear Linear Logarithmic
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Introduction to Tables
Implementation — Better Ideas? [3/3]

Idea #3. Magic functions

▪ Consider a simple structure: unsorted array.

▪ Arrays have fast look-up by index. But we are given a key. A magic 
function that tells a key’s index might make retrieve very fast.

▪ What about delete? Idea: Allow empty items, so delete does not 
need to move items down.

▪ Retrieve/insert/delete in (amortized?) constant time—maybe?

▪ No, actually, but this is still a worthwhile idea.

In practice: Hash Tables

Sorted
Array

Unsorted
Array

Sorted
Linked List

Unsorted
Linked List

Binary
Search Tree

Strongly
Balanced
(how?) BST

Retrieve Logarithmic Linear Linear Linear Linear Logarithmic

Insert Linear Constant-ish Linear Constant Linear Logarithmic

Delete Linear Linear Linear Linear Linear Logarithmic
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Unit Overview
Tables & Priority Queues

Topics

▪ Introduction to Tables

▪ Priority Queues

▪ Binary Heap Algorithms

▪ Heaps & Priority Queues in the C++ STL

▪ 2-3 Trees

▪ Other self-balancing search trees

▪ Hash Tables

▪ Prefix Trees

▪ Tables in the C++ STL & Elsewhere
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Idea #1: Restricted Table

Idea #2: Keep a tree balanced

Idea #3: Magic functions

Several lousy implementations

A special-purpose 
implementation: “the Radix 
Sort of Table implementations”
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