
Binary Search Trees
Introduction to Tables

CS 311 Data Structures and Algorithms

Lecture Slides

Wednesday, November 6, 2024

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2005–2024 Glenn G. Chappell

Some material contributed by Chris Hartman

continued

2024-11-06 CS 311 Fall 2024

Unit Overview
The Basics of Trees

Topics

▪ Introduction to Trees

▪ Binary Trees

▪ Binary Search Trees

(part)

2

Review

2024-11-06 CS 311 Fall 2024 3

2024-11-06 CS 311 Fall 2024

Review
Where Are We? — The Big Challenge

Our problem for most of the rest of the semester:

▪ Store: A collection of data items, all of the same type.

▪ Things we need to be able to do:

▪ Access items [single item: retrieve/find, all items: traverse].

▪ Add new item [insert].

▪ Eliminate existing item [delete].

▪ Time & space efficiency are desirable.

A solution to this problem is a container.

In a generic container, client code can specify the value type.

Note the three primary
single-item operations:
retrieve, insert, delete.
We will see these over &
over again.

4

2024-11-06 CS 311 Fall 2024

Review
Introduction to Trees

Informally, we might categorize trees as “bushy” or “stringy”.

Bushy trees (suitably defined) have short paths
between vertices.

Suppose we can organize a tree so that some
operation only works with a single path between
vertices. If the tree is bushy, then the operation
is fast.

“Bushy” Tree “Stringy” Tree

This is the main reason
why trees are useful in
data structure design.

5

2024-11-06 CS 311 Fall 2024

Review
Binary Trees — Definitions [1/2]

A Binary Tree consists of a set T of nodes so that either:

▪ T is empty (no nodes), or

▪ T consists of a node r, the root, and two subtrees of r, each of
which is a Binary Tree:

▪ the left subtree, and

▪ the right subtree.

We make a strong distinction between left and right subtrees.
Sometimes we use them for very different things.

The left and/or right subtree of a vertex may be empty.

a

b

a

b

Different Binary Trees

6

Review
Binary Trees — Definitions [2/2]

Full Binary Tree

▪ Leaves all lie in the same level.
All other nodes have two children each.

Complete Binary Tree

▪ All levels above the bottom are full.
Bottom level is filled left-to-right.

▪ Importance. Nodes are added in a fixed
order. Has a useful array representation.

Strongly Balanced Binary Tree

▪ For each node, the left and right subtrees
have heights that differ by at most 1. (An
empty Binary Tree has height -1.)

▪ Importance. Height of entire tree is small.
This can allow for fast operations.

Every full Binary Tree is complete.

Every complete Binary Tree is strongly balanced.

2024-11-06 CS 311 Fall 2024

All three of these
concepts can be
useful notions of

“bushy”.

7

Review
Binary Trees — Traversals [1/3]

To traverse a Binary Tree means to visit each node in some order.

Standard Binary Tree traversals: preorder, inorder, postorder. The
name tells where the root goes: before, between, after.

Preorder traversal:

▪ Root.

▪ Preorder traversal of left subtree.

▪ Preorder traversal of right subtree.

Inorder traversal:

▪ Inorder traversal of left subtree.

▪ Root.

▪ Inorder traversal of right subtree.

Postorder traversal.

▪ Postorder traversal of left subtree.

▪ Postorder traversal of right subtree.

▪ Root.

2024-11-06 CS 311 Fall 2024

4 5

Preorder traversal: 1 2 4 3 5

Inorder traversal: 2 4 1 3 5
Postorder traversal: 4 2 5 3 1

32

1

8

2024-11-06 CS 311 Fall 2024

Review
Binary Trees — Traversals [2/3] (Try It!)

Write preorder, inorder, and postorder traversals of the Binary
Tree shown below.

Answers on next slide.

B

LH

TQ

A

F

9

2024-11-06 CS 311 Fall 2024

Review
Binary Trees — Traversals [3/3] (Try It!)

Write preorder, inorder, and postorder traversals of the Binary
Tree shown below.

Answers

Preorder: A B H Q T L F

Inorder: Q H T B L A F

Postorder: Q T H L B F A

B

LH

TQ

A

F

10

2024-11-06 CS 311 Fall 2024

Review
Binary Trees — Implementation

A common way to implement a Binary
Tree is to use separately allocated
nodes referred to by pointers.

▪ Each node has a data item and two
child pointers: left & right.

▪ A pointer is null if there is no child.

▪ There might also be a pointer to the
parent—if that would be helpful.

A complete Binary Tree can be
implemented by simply putting the
items in an array and keeping track
of the size of the tree.

This implementation is very efficient
(time & space), but it is only useful
when the tree will stay complete.

3

21

527

head

Logical Structure

0

10 20

70 80

30

90

40 50 60

0 10 20 30 40 50 60 70 80 90

Physical Structure

11

2024-11-06 CS 311 Fall 2024

Review
Binary Search Trees — What a Binary Search Tree Is

A Binary Search Tree is a Binary Tree
in which each node contains a single
data item, which includes a key, and:

▪ Descendants holding keys less than
the node’s are in its left subtree.

▪ Descendants holding keys greater
than the node’s are in its right subtree.

In other words, an inorder traversal
gives keys in sorted order.

This is another value-oriented way to
deal with data (while Binary
Trees are position-oriented).

Binary Search Trees and SortedSequences
are examples of sorted containers.

Items ≤ x Items ≥ x

Must be ≤ x

13 30

4

Inorder traversal:
4 10 13 16 30

x

16

10

12

Review
Binary Search Trees — Operations

Algorithms for the BST operations:

▪ Traverse

▪ Recursively traverse left subtree of root.

▪ Visit the root.

▪ Recursively traverse right subtree of root.

▪ Retrieve

▪ Search. Start at the root. Go down, left or right as appropriate, until
either the given key or an empty spot is found.

▪ Insert

▪ Search, then …

▪ Put the value in the spot where it should go.

▪ Delete

▪ To be covered

2024-11-06 CS 311 Fall 2024

13 30

4

Inorder
Traversal

16

10

13

Binary Search Trees

2024-11-06 CS 311 Fall 2024

continued

14

2024-11-06 CS 311 Fall 2024

Binary Search Trees
Operations — Delete [1/4]

Delete is the most complex of the three single-item operations.

We will assume the key to be deleted is present in the tree.
Otherwise the specification should tell us what to do.

Begin by finding the node holding the key to be deleted (search).

Then proceed to one of three cases, depending
on how many children this node has:

▪ No children (leaf).

▪ One child.

▪ Two children.

The no-children (leaf) case is easy:
Just remove the node.

Example. Delete key 28.

13

22

4

28

25

20 42

30

16

10

15

2024-11-06 CS 311 Fall 2024

Binary Search Trees
Operations — Delete [2/4]

If the node to remove has exactly one child, replace the subtree
rooted at the node with the subtree rooted at its child. (This is
generally a constant-time operation, once the node is found.)

Example. Delete key 20.

=

28222822

28222525

25 42424220

13 3013 3013 30

Redraw

164164164

101010

16

2024-11-06 CS 311 Fall 2024

Binary Search Trees
Operations — Delete [3/4]

The trickiest case is when the node to delete has two children.

▪ Replace its data with data in its inorder successor (copy or swap).

▪ Delete the inorder successor, which must have at most one child.

The inorder successor is the node that comes next in an inorder
traversal, that is, the leftmost node in the node’s right subtree.

To find the inorder successor of a node with two children:

▪ Go to the right child.

▪ Then left child, left child, left child, … until we reach a node that has
no left child.

The inorder
successor of
this node is
this node.This is why the

inorder successor
must have at
most one child.

17

2024-11-06 CS 311 Fall 2024

Binary Search Trees
Operations — Delete [4/4]

When the node to delete has two children:

▪ Replace its data with data in its inorder successor (copy or swap).

▪ Delete the inorder successor, which must have at most one child.

Example. Delete key 16.

As on
earlier slide

28222822

2525 2822

4220 42 ? 25 42

13 30 13 3013 30

164 204204

10 1010

18

2024-11-06 CS 311 Fall 2024

Binary Search Trees
Operations — Summary & Thoughts

Algorithms for the three primary single-item BST operations:

▪ Retrieve

▪ Search. Start at the root. Go down, left or right as appropriate, until
either the given key or an empty spot is found.

▪ Insert

▪ Search, then …

▪ Put the value in the spot where it should go.

▪ Delete

▪ Search, then …

▪ Check the number of children the node has:

▪ 0. Delete node.

▪ 1. Replace subtree rooted at node with subtree rooted at child.

▪ 2. Copy data from (or swap data with) inorder successor. Proceed as above.

All three operations, in the worst case, require a number of steps
that is something like the height of the tree.

It turns out that the height of the tree is small (so all three
operations are fast) if the tree is strongly balanced.

19

Binary Search Trees
Operations — Try It! [1/2]

Do delete key 58 on the Binary Search Tree shown. Draw the
resulting tree.

Answer on next slide.

2024-11-06 CS 311 Fall 2024

7256

7523

8111

58

20

Binary Search Trees
Operations — Try It! [2/2]

Do delete key 58 on the Binary Search Tree shown. Draw the
resulting tree.

Procedure

▪ The 58 node is 2-children case.

▪ Find the inorder successor: the 72 node.

▪ Copy/swap 72 to the root node.

▪ Delete the old 72 node. This is 1-child case.

▪ Replace the subtree rooted at the old 72 node by the subtree rooted
at its child (75).

2024-11-06 CS 311 Fall 2024

23

7556

8111

72

7523

7256

8111

58

7523

?56

8111

72

21

2024-11-06 CS 311 Fall 2024

Binary Search Trees
Efficiency — Introduction

BST retrieve, insert, and delete follow pointers down from the root.

So these operations look at only a single path between vertices.

But can we make/keep a BST “bushy”?

Our notion of “bushy”, for now, is strongly balanced.

The number of steps required for a BST single-item
operation is something like the height of the tree.

Worst case: height = # of nodes – 1.

But what about when the tree is strongly balanced?

So: given the size of a strongly balanced Binary Tree,
how large can its height be?

22

2024-11-06 CS 311 Fall 2024

Binary Search Trees
Efficiency — Height of a Strongly Balanced Binary Tree [1/2]

Given the size of a strongly balanced Binary Tree, how large can its
height be?

In order to answer this, first look at a reverse question: Given the
height of a strongly balanced Binary Tree, how small can its size
be? That is, what is the minimum size of a strongly balanced
Binary Tree with height h?

Answer. Apparently, Fh+3 – 1, for h = 0, 1, 2, …

▪ Fk is Fibonacci number k. F0 = 0, F1 = 1, F2 = 1, F2 = 2, etc.

It is not too hard to prove this using mathematical induction (but
we will not).

23

2024-11-06 CS 311 Fall 2024

Binary Search Trees
Efficiency — Height of a Strongly Balanced Binary Tree [2/2]

Back to the original question: Given the size of a strongly balanced
Binary Tree, how large can its height be?

▪ We know that, if we have a strongly balanced Binary Tree with
height h and size n, then n ≥ Fh+3 – 1.

▪ Fact. Let φ =
1+ 5

2
. Then Fk ≈

φk

5
 (as in fibo_formula.cpp).

▪ Thus, roughly: n ≥
φh+3

5
.

▪ Solving for h, we obtain, roughly: h ≤ logφ 5n – 3.

▪ We conclude that, for a strongly balanced Binary Tree, h is O(log n).

Even better, the height of a Binary Search Tree is, with high
probability, O(log n) for random data. But we will not verify this.

24

Binary Search Trees
Efficiency — Order of Operations

Order of the BST operations, using the algorithms discussed:

Retrieve

▪ Linear time.

▪ Worst case is roughly the height.

▪ If strongly balanced: logarithmic time.
But if we insert & delete, then it might

not stay strongly balanced.

▪ Logarithmic time on average for random data.

▪ Retrieve does not modify the tree. If that is all we do, we
might want to create a strongly balanced tree beforehand.

Insert

▪ Linear time (but see the second point under Retrieve).

Delete

▪ Linear time (but see the second point under Retrieve).

Traverse: inorder traversal

▪ Linear time.

2024-11-06 CS 311 Fall 2024 25

Binary Search Trees
Efficiency — A Problem

A BST has good average performance; retrieve, insert, and delete
are logarithmic time for average data.

But in the worst case, a BST is worse than a sorted array.

Can we efficiently keep a Binary Search Tree strongly balanced,
while allowing for insert & delete operations?

Keep this question in mind. We will eventually answer it.

2024-11-06 CS 311 Fall 2024

BST: strongly

balanced OR
average case

Sorted Array BST:

worst case

Retrieve Logarithmic Logarithmic Linear

Insert Logarithmic Linear Linear

Delete Logarithmic Linear Linear

26

Unit Overview
Tables & Priority Queues

Next we begin a unit on ADTs Table and Priority Queue and their
implementations.

Topics

▪ Introduction to Tables

▪ Priority Queues

▪ Binary Heap Algorithms

▪ Heaps & Priority Queues in the C++ STL

▪ 2-3 Trees

▪ Other self-balancing search trees

▪ Hash Tables

▪ Prefix Trees

▪ Tables in the C++ STL and Elsewhere

This will be the last big unit in the class. After this, we look briefly
at other topics: external data, graph algorithms.

2024-11-06 CS 311 Fall 2024 27

Introduction to Tables

2024-11-06 CS 311 Fall 2024 28

2024-11-06 CS 311 Fall 2024

Introduction to Tables
Value-Oriented ADTs — Idea

Position-Oriented ADT

▪ Get item based on where
it is stored.

▪ Organize data according to
where the client wants it.

Examples

▪ Sequence

▪ Stack

▪ Queue

▪ Binary Tree

Value-Oriented ADT

▪ Get item based on its value—
or part of the value: key-
based look-up.

▪ Organize data for greatest
efficiency.

Examples

▪ SortedSequence

▪ Binary Search Tree

Client code often only needs
efficiency, so does not need
to know how items are
organized internally.

Can we do better here?

29

2024-11-06 CS 311 Fall 2024

Introduction to Tables
Value-Oriented ADTs — Table

Table is a general value-oriented ADT, not tied to any particular
implementation.

Data

▪ A collection of items, each with a key.

Operations

▪ Single-Item Operations

▪ retrieve by key.

▪ insert item.

▪ delete by key.

▪ Access All Data

▪ traverse.

▪ The Usual

▪ create, destroy, copy.

▪ isEmpty.

▪ size.

Table

Key Value

12 Ed

04 Peg

09 AnnOnce again, three
single-item operations.

30

Introduction to Tables
Value-Oriented ADTs — Issues [1/2]

Allow multiple items with the same key?

▪ It depends on the requirements of the client.

Require traverse to visit items in sorted order?

▪ Maybe. This is inefficient in some implementations.

Allow modification of data while it is in the Table?

▪ Modifying a key can be problematic, since an item is generally
located according to its key. Changing the key would require
moving the item. Another issue involves disallowing duplicate keys.

▪ Modifying the associate value is typically not a problem.

Have a separate interface in which the key is the entire value?

▪ Sure. Call it Set.

Conclusion

▪ There is no single best interface to a Table. But they are all similar.

▪ Therefore, we will be a little vague about exactly what a Table is.

2024-11-06 CS 311 Fall 2024

Table

Key Value

12 Ed

04 Peg

09 Ann

31

Introduction to Tables
Value-Oriented ADTs — Issues [2/2]

We have looked at restricted versions of a position-oriented ADT:

▪ Sequence allows retrieval/deletion at any position.

▪ Stack & Queue only allow retrieval/deletion at a single position—the
highest (or lowest) position.

What about doing the same with value-oriented ADTs?

▪ Table allows retrieval/deletion using any key.

▪ Is there a useful ADT that only allows retrieval/deletion of the item
with the highest key?

Yes! We call it Priority Queue. (More on this later.)

2024-11-06 CS 311 Fall 2024 32

2024-11-06 CS 311 Fall 2024

Introduction to Tables
Applications

What do we use a Table for?

▪ Data accessed by a key field. For example:

▪ Customers accessed by phone number.

▪ Students accessed by student ID number.

▪ Any other kind of data with an ID code.

▪ Set data.

▪ Each item has only a key, with no associated value.

▪ Fundamentally, the only questions we can answer concern which keys lie

in the dataset.

▪ Array-like datasets whose indices are not nonnegative integers.
▪ arr2["hello"] = 3;

▪ Array-like datasets that are sparse*.
▪ arr[6] = 1; arr[1000000000] = 2;

*Or not sparse. Sequences can be stored as Tables. Indices become keys.

33

2024-11-06 CS 311 Fall 2024

Introduction to Tables
Implementation — Possibilities [1/3]

What are possible Table implementations?

▪ A Sequence holding key-value pairs.

▪ Array-based or Linked-List-based.

▪ Sorted or unsorted.

▪ A Binary Search Tree holding key-value pairs.

▪ Implemented using a pointer-based Binary Tree.

How efficient are these implementations?

(4, Peg) (12, Ed)

Array
Implementations

Linked List
Implementations

Binary Search Tree
Implementation

(4, Peg) (9, Ann) (12, Ed) (4, Peg) (9, Ann) (12, Ed)

(12, Ed) (4, Peg) (9, Ann) (12, Ed) (4, Peg) (9, Ann)

Unsorted Unsorted

std::deque?
In this context,
it is just a slow
array.

Table

Key Value

12 Ed

04 Peg

09 Ann

Sorted by Key Sorted by Key

(9, Ann)

34

2024-11-06 CS 311 Fall 2024

Introduction to Tables
Implementation — Possibilities [2/3]

Find the order of Table operations, for each implementation.

▪ Allow multiple equivalent keys, where it matters.

▪ If multiple equivalent keys are not allowed, then insert must first
do a search (much the same as retrieve). The order of insert
would thus be the order of retrieve+insert shown below.

*We do not (yet?) know how to ensure that the tree will stay strongly balanced,
unless we restrict ourselves to read-only operations (no insert, delete).

**Constant time if we have pre-allocated enough storage.

Sorted
Array

Unsorted
Array

Sorted
Linked List

Unsorted
Linked List

Binary
Search Tree

Strongly
Balanced*
BST?

Retrieve Logarithmic Linear Linear Linear Linear Logarithmic

Insert Linear Linear/
amortized
constant**

Linear Constant Linear Logarithmic

Delete Linear Linear Linear Linear Linear Logarithmic

Ick!

35

2024-11-06 CS 311 Fall 2024

Introduction to Tables
Implementation — Possibilities [3/3]

Tables can be implemented in many ways. Different
implementations are appropriate in different circumstances.

In some situations, the amortized constant-time insertion for an
unsorted array and the logarithmic-time retrieve for a sorted
array can be combined!

▪ Insert all data into an unsorted array, sort the array, then use
Binary Search to retrieve data.

▪ This is a good way to handle Table data with separate filling &
searching phases—and little or no deletion.

We will cover some sophisticated Table implementations. But
remember that sometimes a simple technique is best.

36

2024-11-06 CS 311 Fall 2024

Introduction to Tables
Implementation — Better Ideas? [1/3]

Idea #1. Restricted Table

▪ Perhaps we can do better if we do not implement a Table in full
generality.

▪ Do not allow retrieve & delete on all keys. Instead allow these
operations only on the greatest key.

In practice: Priority Queue

Sorted
Array

Unsorted
Array

Sorted
Linked List

Unsorted
Linked List

Binary
Search Tree

Strongly
Balanced
(how?) BST

Retrieve Logarithmic Linear Linear Linear Linear Logarithmic

Insert Linear Constant-ish Linear Constant Linear Logarithmic

Delete Linear Linear Linear Linear Linear Logarithmic

37

2024-11-06 CS 311 Fall 2024

Introduction to Tables
Implementation — Better Ideas? [2/3]

Idea #2. Keep a tree balanced (& bushy)

▪ Can we keep a Binary Search Tree strongly balanced—efficiently?

▪ Perhaps we could loosen the strongly balanced requirement?
What we really need is small height.

▪ Loosen the binary requirement, too?

In practice: Self-balancing search trees

▪ 2-3 Tree & 2-3-4 Tree, Red-Black Tree

▪ AVL Tree

▪ B-Tree & variations (B+ Tree, etc.)

Sorted
Array

Unsorted
Array

Sorted
Linked List

Unsorted
Linked List

Binary
Search Tree

Strongly
Balanced
(how?) BST

Retrieve Logarithmic Linear Linear Linear Linear Logarithmic

Insert Linear Constant-ish Linear Constant Linear Logarithmic

Delete Linear Linear Linear Linear Linear Logarithmic

38

2024-11-06 CS 311 Fall 2024

Introduction to Tables
Implementation — Better Ideas? [3/3]

Idea #3. Magic functions

▪ Consider a simple structure: unsorted array.

▪ Arrays have fast look-up by index. But we are given a key. A magic
function that tells a key’s index might make retrieve very fast.

▪ What about delete? Idea: Allow empty items, so delete does not
need to move items down.

▪ Retrieve/insert/delete in (amortized?) constant time—maybe?

▪ No, actually, but this is still a worthwhile idea.

In practice: Hash Tables

Sorted
Array

Unsorted
Array

Sorted
Linked List

Unsorted
Linked List

Binary
Search Tree

Strongly
Balanced
(how?) BST

Retrieve Logarithmic Linear Linear Linear Linear Logarithmic

Insert Linear Constant-ish Linear Constant Linear Logarithmic

Delete Linear Linear Linear Linear Linear Logarithmic

39

Unit Overview
Tables & Priority Queues

Topics

▪ Introduction to Tables

▪ Priority Queues

▪ Binary Heap Algorithms

▪ Heaps & Priority Queues in the C++ STL

▪ 2-3 Trees

▪ Other self-balancing search trees

▪ Hash Tables

▪ Prefix Trees

▪ Tables in the C++ STL & Elsewhere

2024-11-06 CS 311 Fall 2024

Idea #1: Restricted Table

Idea #2: Keep a tree balanced

Idea #3: Magic functions

Several lousy implementations

A special-purpose
implementation: “the Radix
Sort of Table implementations”

40

	Slide 1: Binary Search Trees Introduction to Tables
	Slide 2: Unit Overview The Basics of Trees
	Slide 3
	Slide 4: Review Where Are We? — The Big Challenge
	Slide 5: Review Introduction to Trees
	Slide 6: Review Binary Trees — Definitions [1/2]
	Slide 7: Review Binary Trees — Definitions [2/2]
	Slide 8: Review Binary Trees — Traversals [1/3]
	Slide 9: Review Binary Trees — Traversals [2/3] (Try It!)
	Slide 10: Review Binary Trees — Traversals [3/3] (Try It!)
	Slide 11: Review Binary Trees — Implementation
	Slide 12: Review Binary Search Trees — What a Binary Search Tree Is
	Slide 13: Review Binary Search Trees — Operations
	Slide 14
	Slide 15: Binary Search Trees Operations — Delete [1/4]
	Slide 16: Binary Search Trees Operations — Delete [2/4]
	Slide 17: Binary Search Trees Operations — Delete [3/4]
	Slide 18: Binary Search Trees Operations — Delete [4/4]
	Slide 19: Binary Search Trees Operations — Summary & Thoughts
	Slide 20: Binary Search Trees Operations — Try It! [1/2]
	Slide 21: Binary Search Trees Operations — Try It! [2/2]
	Slide 22: Binary Search Trees Efficiency — Introduction
	Slide 23: Binary Search Trees Efficiency — Height of a Strongly Balanced Binary Tree [1/2]
	Slide 24: Binary Search Trees Efficiency — Height of a Strongly Balanced Binary Tree [2/2]
	Slide 25: Binary Search Trees Efficiency — Order of Operations
	Slide 26: Binary Search Trees Efficiency — A Problem
	Slide 27: Unit Overview Tables & Priority Queues
	Slide 28
	Slide 29: Introduction to Tables Value-Oriented ADTs — Idea
	Slide 30: Introduction to Tables Value-Oriented ADTs — Table
	Slide 31: Introduction to Tables Value-Oriented ADTs — Issues [1/2]
	Slide 32: Introduction to Tables Value-Oriented ADTs — Issues [2/2]
	Slide 33: Introduction to Tables Applications
	Slide 34: Introduction to Tables Implementation — Possibilities [1/3]
	Slide 35: Introduction to Tables Implementation — Possibilities [2/3]
	Slide 36: Introduction to Tables Implementation — Possibilities [3/3]
	Slide 37: Introduction to Tables Implementation — Better Ideas? [1/3]
	Slide 38: Introduction to Tables Implementation — Better Ideas? [2/3]
	Slide 39: Introduction to Tables Implementation — Better Ideas? [3/3]
	Slide 40: Unit Overview Tables & Priority Queues

