
More on Linked Lists
Sequences in the C++ STL

CS 311 Data Structures and Algorithms

Lecture Slides

Monday, October 28, 2024

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2005–2024 Glenn G. Chappell

Some material contributed by Chris Hartman

continued



2024-10-28 CS 311 Fall 2024

Unit Overview
Data Handling & Sequences

Topics

▪ Data abstraction

▪ Introduction to Sequences

▪ Interface for a smart array

▪ Basic array implementation

▪ Exception safety

▪ Allocation & efficiency

▪ Generic containers

▪ Node-based structures

▪ More on Linked Lists

▪ Sequences in the C++ STL

▪ Stacks

▪ Queues





Smart Arrays

Linked Lists













(part) 

2



Review

2024-10-28 CS 311 Fall 2024 3



2024-10-28 CS 311 Fall 2024

Review
Where Are We? — The Big Challenge

Our problem for most of the rest of the semester:

▪ Store: A collection of data items, all of the same type.

▪ Things we need to be able to do:

▪ Access items [single item: retrieve/find, all items: traverse].

▪ Add new item [insert].

▪ Eliminate existing item [delete].

▪ Time & space efficiency are desirable.

A solution to this problem is a container.

In a generic container, client code can specify the value type.

4



2024-10-28 CS 311 Fall 2024

Review
Node-Based Structures — Introduction

Many data structures are built out of nodes.

▪ A node is usually a small block of memory that is referenced via a 
pointer, and which may reference other nodes via pointers.

▪ To find a node, follow a chain of pointers. Look-up can be slow.

▪ Operations that require rearrangement might be very fast.

Our pictures are usually prettier than
the actual arrangement of nodes
in memory. But they do show the
logical structure correctly.

Physical 
Structure

Logical 
Structure

5



Review
Node-Based Structures — Smart Pointers [1/4]

The C++ Standard Library includes RAII class templates called 
smart pointers, which automatically handle ownership of 
dynamic objects.

std::unique_ptr<T> (<memory>)

▪ One-owner-at-a-time ownership of a dynamic object of type T.

▪ The destructor of an owning unique_ptr destroys the object 
pointed to.

▪ Movable but not copyable. Moving transfers ownership.

std::shared_ptr<T> (<memory>)

▪ Allows shared ownership of a dynamic object of type T.

▪ Uses a reference count. Destroys object when the count hits 0.

▪ “The last one to leave turns out the lights.”

▪ Copyable. Copying grants shared ownership.

2024-10-28 CS 311 Fall 2024 6



Review
Node-Based Structures — Smart Pointers [2/4]

Create using make_unique/make_shared. Then we do neither the 
new nor the delete directly.

auto unp = make_unique<Foo>(5, "xy", 3.2);

Dereference just like a pointer.

Foo x = *unp;

unp->bar();

To obtain a regular pointer to the referenced object, call member 
function get.

Foo * p = unp.get()

2024-10-28 CS 311 Fall 2024 7



Review
Node-Based Structures — Smart Pointers [3/4]

A null smart pointer is one that does not point to anything. Check 
for this by treating a smart pointer like a bool.

if (unp)  // Non-null?

    unp->bar();

With a unique_ptr, transfer ownership by passing/returning a 
unique_ptr by value (std::move may be required). Otherwise, 
pass a unique_ptr by reference or reference-to-const.

We can pass a shared_ptr by value arbitrarily, sharing ownership.

2024-10-28 CS 311 Fall 2024 8



Review
Node-Based Structures — Smart Pointers [4/4]

Suggestions

▪ When you want a smart pointer, start by using unique_ptr.

▪ To transfer ownership, pass/return by value.

▪ Otherwise, pass by reference or reference-to-const, OR call get and 
pass a regular pointer.

▪ If code does not compile because it tries to copy a unique_ptr:

▪ If you want to transfer ownership, then you might simply need to wrap 
the unique_ptr in std::move.

▪ If you do not want to transfer ownership, then you can call get to obtain 
a non-owning regular pointer and use that instead.

▪ If it turns out that you really need shared ownership, then do a global 

search/replace: unique → shared

2024-10-28 CS 311 Fall 2024 9



Review
More on Linked Lists [1/2]

*For Singly Linked Lists, insert/remove just after the given position.

**O(1) if no reallocate-and-copy. (Pre-allocate to ensure this.)

***For O(1), need a pointer to end of list. Otherwise, O(n). (This can be tricky. 

And, for remove @ end, it is mostly impossible.)

2024-10-28 CS 311 Fall 2024

Smart Array Singly
Linked List

Doubly
Linked List

Look-up by index O(1) O(n) O(n)

Search sorted O(log n) O(n) O(n)

Search unsorted O(n) O(n) O(n)

Sort O(n log n) O(n log n) O(n log n)

Insert @ given pos O(n) O(1)* O(1)

Remove @ given pos O(n) O(1)* O(1)

Splice O(n) O(1) O(1)

Insert @ beginning O(n) O(1) O(1)

Remove @ beginning O(n) O(1) O(1)

Insert @ end O(n)**

amortized const

O(1) or O(n)*** O(1)

Remove @ end O(1) O(1) or O(n)*** O(1)

Traverse O(n) O(n) O(n)

We often 
find faster

with an 
array.

We often 
rearrange 
faster with a 
Linked List.

10



2024-10-28 CS 311 Fall 2024

Review
More on Linked Lists [2/2]

Arrays store consecutive items in nearby memory locations.

Modern processors prefetch memory locations near those 
accessed, storing them in a fast on-chip cache.

An algorithm has locality of reference if, when it accesses a data 
item, the following accesses are likely to be nearby items.

Therefore:

  Array + Algorithm with good locality of reference
  → significant speed advantage over a Linked List

11



More on Linked Lists

2024-10-28 CS 311 Fall 2024

continued

12



2024-10-28 CS 311 Fall 2024

More on Linked Lists
Implementation — Problem

Twice now, we have written a Linked List in which the node 
destructor recursively destroys the rest of the list.

For a list that may be arbitrarily long, this is a bad idea!

Why? The recursive node destructor has linear recursion depth. 
Stack overflow awaits.

<gasp> No! Not—
LINEAR RECURSION DEPTH! 

Anything but that!

The phrase
“linear recursion depth” 
should strike terror into 

your heart.

13



2024-10-28 CS 311 Fall 2024

More on Linked Lists
Implementation — More CODE

TO DO

▪ Revise the smart-pointer-based Linked List so that it no longer has 
a recursive destructor.

Done. See llnode2.hpp.

See use_list2.cpp for 

a program that uses this 
Linked List.

14



Sequences in the C++ STL

2024-10-28 CS 311 Fall 2024 15



Sequences in the C++ STL
Generic Sequence Containers

The C++ STL includes six generic Sequence containers.

▪ std::vector

▪ Smart resizable array.

▪ std::basic_string

▪ Much like vector, but aimed at character string operations.

▪ string is basic_string<char>; other string-ish types are defined.

▪ std::array

▪ A-little-bit-smart array. Not resizable. Size is part of the type.

▪ Not the same as a C++ built-in array.

▪ Data items are stored in the object.

▪ A little faster than vector.

▪ std::forward_list

▪ Singly Linked List.

▪ std::list

▪ Doubly Linked List.

▪ std::deque (stands for Double-Ended QUEue; say “deck”)

▪ Like vector, but a bit slower. Fast insert/remove at both ends.

2024-10-28 CS 311 Fall 2024

5 3 8 4

C:7 S:4

vector<int>   size = 4

5 3 8 4

array<int,4>

We will not say much more about 
std::array & std::forward_list.

16



Sequences in the C++ STL
std::deque [1/3]

We are familiar with arrays and Linked Lists. What is std::deque?

There are two big ideas behind it.

Big Idea #1

▪ vector uses an array with data stored at the beginning. This gives 
linear-time insert/remove at beginning, constant-time remove at 
end, and, if we are careful, amortized constant-time insert at end.

▪ What if we store data in the middle? When we reallocate-and-copy, 
we move our data to the middle of the new array.

▪ Result: amortized Θ(1) insert and Θ(1) remove at beginning & end.

2024-10-28 CS 311 Fall 2024

0 1 2 3 4 5

3 4 520 1

17



Sequences in the C++ STL
std::deque [2/3]

Big Idea #2

▪ Doing reallocate-and-copy for a vector requires a copy/move call 
for every data item. For large, complex data items, this can be 
time-consuming.

▪ Instead, use an array of pointers to arrays. Only the secondary 
arrays hold data items. Reallocate-and-copy only deals with the 
array of pointers.

▪ We still get most of the locality-of-reference advantages of an array.

▪ We can do the copy portion of reallocate-and-copy using a raw-memory 
copy—no copy/move ctor calls.

2024-10-28 CS 311 Fall 2024

0 1 2 3 4 5 6 7 8

Array of 

Pointers

Arrays of 

Data Items

When space runs out, 
reallocate-and-copy 
this, but leave these 
alone.

Contains
no data 
items—no 
objects of
any kind,
just pointers.

18



Sequences in the C++ STL
std::deque [3/3]

A std::deque implementation typically uses both ideas.

▪ 2 levels: array of pointers to arrays. Or maybe 3 levels.

▪ Reallocate-and-copy relocates to the middle of the new space.

Result: std::deque is an array-ish container.

▪ Iterators are random-access. 

▪ Look-up by index is constant time—but slower than vector.

▪ Locality-of-reference advantages are almost as good as vector.

▪ Reallocate-and-copy is likely to be faster than vector.

▪ Insert/remove is fast—(amortized) Θ(1)—at beginning and end. 

▪ Large, difficult-to-copy data items are handled more efficiently.

2024-10-28 CS 311 Fall 2024

1 2 3 4 5 6 7 8 9

deque 

Object

Arrays of 

Data Items

Middle is used

Array of 

Pointers

0

19



Sequences in the C++ STL
Efficiency [1/2] 

Now we compare the efficiency characteristics of STL generic 
Sequence containers.

In the model of computation used in the official description of  
C++ STL, the basic operations are value-type operations only. 
Things like pointer operations are not counted.

▪ So “constant time” in the Standard means that at most a constant 
number of value-type operations are performed.

▪ An algorithm that the Standard calls “constant time” may still 
perform a large number of pointer operations.

Our analyses will be based on the same model of computation that 
we have been using. When the efficiency characteristics 
specified in the C++ Standard appear to be different, we will 
note this.

2024-10-28 CS 311 Fall 2024 20



Sequences in the C++ STL
Efficiency [2/2] 

*Θ(1) if sufficient memory has already been allocated. We can pre-allocate.

**Only a constant number of value-type operations are required. The C++ 

Standard says these are constant-time.

All four have Θ(n) traverse & search-unsorted and Θ(n log n) sort.

2024-10-28 CS 311 Fall 2024

vector, 
basic_string

deque list

Look-up by index Constant Constant Linear

Search sorted Logarithmic Logarithmic Linear

Insert @ given pos Linear Linear Constant

Remove @ given pos Linear Linear Constant

Insert @ end Linear/
Amortized
constant*

Linear/
Amortized
constant**

Constant

Remove @ end Constant Constant Constant

Insert @ beginning Linear Linear/
Amortized
constant**

Constant

Remove @ beginning Linear Constant Constant

The way vector 
acts at the end is 
the way deque 

acts at beginning 
and end.

21



2024-10-28 CS 311 Fall 2024

Unit Overview
What is Next

This completes our discussion of Sequences in full generality.

Next, we look at two restricted versions of Sequences, that is, 
ADTs that are much like Sequence, but with fewer operations:

▪ Stack.

▪ Queue.

For each of these, we look at:

▪ What it is.

▪ Implementation.

▪ Availability in the C++ STL.

▪ Applications.

22


	Slide 1: More on Linked Lists Sequences in the C++ STL
	Slide 2: Unit Overview Data Handling & Sequences
	Slide 3
	Slide 4: Review Where Are We? — The Big Challenge
	Slide 5: Review Node-Based Structures — Introduction
	Slide 6: Review Node-Based Structures — Smart Pointers [1/4]
	Slide 7: Review Node-Based Structures — Smart Pointers [2/4]
	Slide 8: Review Node-Based Structures — Smart Pointers [3/4]
	Slide 9: Review Node-Based Structures — Smart Pointers [4/4]
	Slide 10: Review More on Linked Lists [1/2]
	Slide 11: Review More on Linked Lists [2/2]
	Slide 12
	Slide 13: More on Linked Lists Implementation — Problem
	Slide 14: More on Linked Lists Implementation — More CODE
	Slide 15
	Slide 16: Sequences in the C++ STL Generic Sequence Containers
	Slide 17: Sequences in the C++ STL std::deque [1/3]
	Slide 18: Sequences in the C++ STL std::deque [2/3]
	Slide 19: Sequences in the C++ STL std::deque [3/3]
	Slide 20: Sequences in the C++ STL Efficiency [1/2] 
	Slide 21: Sequences in the C++ STL Efficiency [2/2] 
	Slide 22: Unit Overview What is Next

