
Node-Based Structures
More on Linked Lists

CS 311 Data Structures and Algorithms

Lecture Slides

Friday, October 25, 2024

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2005–2024 Glenn G. Chappell

Some material contributed by Chris Hartman

2024-10-25 CS 311 Fall 2024

Unit Overview
Data Handling & Sequences

Topics

▪ Data abstraction

▪ Introduction to Sequences

▪ Interface for a smart array

▪ Basic array implementation

▪ Exception safety

▪ Allocation & efficiency

▪ Generic containers

▪ Node-based structures

▪ More on Linked Lists

▪ Sequences in the C++ STL

▪ Stacks

▪ Queues





Smart Arrays

Linked Lists











2

Review

2024-10-25 CS 311 Fall 2024 3

2024-10-25 CS 311 Fall 2024

Review
Where Are We? — The Big Challenge

Our problem for most of the rest of the semester:

▪ Store: A collection of data items, all of the same type.

▪ Things we need to be able to do:

▪ Access items [single item: retrieve/find, all items: traverse].

▪ Add new item [insert].

▪ Eliminate existing item [delete].

▪ Time & space efficiency are desirable.

A solution to this problem is a container.

In a generic container, client code can specify the value type.

4

Review
Allocation & Efficiency [1/2]

Originally, our resizable array class had two data members:

▪ Size

▪ Pointer to array

This design is inappropriate for a resizable array. It cannot keep
track of the amount of extra allocated space, if any. Thus, it
must do a reallocate-and-copy every time it is resized larger.

The fix is to add an additional data member to hold the capacity:
the amount of allocated space.

When this is done, the size is still the space used by the client’s
dataset, but it may be smaller than the capacity.

2024-10-25 CS 311 Fall 2024

0 1 2 3 4 5

Client’s data (size = 6)

Allocated space (capacity = 9)

5

Review
Allocation & Efficiency [2/2]

An operation is amortized constant-time if k consecutive
operations require O(k) time. Thus, over many consecutive
operations, the operation averages constant-time.

Not the same as constant-time average case,
which averages over all possible inputs.

Amortized constant-time is not something we
can compare with (say) logarithmic time.

Insert-at-end for a well written smart array is amortized constant-
time:

▪ Store both currently used size and allocated capacity.

▪ When space runs out, reallocate-and-copy with capacity increased
by a constant factor (doubled, for example).

Insert-at-end is still linear time!

2024-10-25 CS 311 Fall 2024

This is our last
efficiency-related

terminology.

6

Review
Generic Containers

When we write a generic container, our value
type is specified by the client code. Its
member functions may throw. We generally
have no idea how to handle these
exceptions. Only the client code knows.

A function that allows exceptions thrown by
client-provided code to propagate
unchanged to the caller, is said to be
exception neutral.

2024-10-25 CS 311 Fall 2024

Client code

Our package

Implementation
of template-

parameter type

calls

calls

This is our last
exception-related

terminology.

This code
might throw …

… and if it does, then
this code handles the
exception.

7

Node-Based Structures

2024-10-25 CS 311 Fall 2024 8

2024-10-25 CS 311 Fall 2024

Node-Based Structures
Introduction [1/3]

Our primary building block for data structures has been the array.

▪ Items are stored in contiguous memory locations.

▪ Look-up operations are usually very fast.

▪ Operations that do rearrangement (insert, delete, etc.) can be slow.

Many data structures are, instead, built out of nodes.

▪ A node is usually a small block of memory that is referenced via a
pointer, and which may reference other nodes via pointers.

▪ Memory-management changes significantly.

▪ To find a node, follow a chain of pointers. Look-up can be slow.

▪ Operations that require rearrangement might be very fast.

Most of the data
structures we look
at from now on will

be node-based.

Node

9

2024-10-25 CS 311 Fall 2024

Node-Based Structures
Introduction [2/3]

When we draw pictures of node-based data structures, the
positions of nodes in the picture usually have nothing to do with
their positions in memory.

For example, if a structure is stored like this …

… then we might draw it like this:

Physical

Structure

Logical

Structure

10

2024-10-25 CS 311 Fall 2024

Node-Based Structures
Introduction [3/3]

Internal pointers in a node-based structure are
often owning pointers.

Therefore, it can be convenient to implement node-based
structures in C++ using smart pointers, which handle clean-up
automatically.

See the following slides.

Think of nodes as
resources to be

owned & managed.

11

Node-Based Structures
Smart Pointers — Overview

In 2011, smart pointer class templates were added to the C++
Standard Library. These use RAII to handle ownership of
dynamic objects automatically.

std::unique_ptr<T> (<memory>)

▪ One-owner-at-a-time ownership of a dynamic object of type T.

▪ The destructor of an owning unique_ptr destroys the object
pointed to.

▪ Movable but not copyable. Moving transfers ownership.

std::shared_ptr<T> (<memory>)

▪ Allows shared ownership of a dynamic object of type T.

▪ Uses a reference count. Destroys object when the count hits 0.

▪ “The last one to leave turns out the lights.”

▪ Copyable. Copying grants shared ownership.

2024-10-25 CS 311 Fall 2024 12

Node-Based Structures
Smart Pointers — Creation

A default-constructed smart pointer does not point to anything.

unique_ptr<Foo> unp;

We can pass a pointer returned by new to the constructor of a
unique_ptr/shared_ptr, which will then do the delete for us.

Foo * p = new Foo(5, "xy", 3.2); // Do not delete p

unique_ptr<Foo> unp(p); // unp does the delete

But there is a better way: call make_unique/make_shared, passing
constructor arguments. Then never do new or delete.

auto unp = make_unique<Foo>(5, "xy", 3.2);

 // Both new and delete are done for us

2024-10-25 CS 311 Fall 2024

Arguments for
Foo constructor.

13

Node-Based Structures
Smart Pointers — Use like a Pointer

Dereference a unique_ptr/shared_ptr just like a regular pointer.

cout << *unp << endl;

The arrow operator is also available.

unp->bar(); // Member function of the referenced object

To get an ordinary (non-smart) pointer to the object a smart
pointer points to, call member function get. This does not affect
ownership issues at all. The pointer returned is non-owning.

Foo * p = unp.get();

p->bar();

2024-10-25 CS 311 Fall 2024 14

Node-Based Structures
Smart Pointers — Null

A unique_ptr/shared_ptr that does not point to anything is said
to be null. This corresponds to a null pointer.

Test whether a smart pointer is null by treating it like a bool.

if (unp) // Is unp nonnull (does it point to anything)?

{

 unp->bar();

}

Member reset relinquishes ownership early and makes the smart
pointer null. If the object had only one owner, it is destroyed.

unp.reset(); // Relinquish ownership;

 // unp is now null

2024-10-25 CS 311 Fall 2024

Similarly, “if (!unp)” checks whether unp is null.

Unlike regular pointers, this works on a default-constructed
unique_ptr/shared_ptr that has not been set to a value.

I almost never
use reset.

15

Node-Based Structures
Smart Pointers — Transferring & Sharing Ownership

To transfer ownership, pass or return a unique_ptr by value. This
unique_ptr must be an Rvalue; std::move may be required.

unique_ptr<Foo> makeAFoo()

{

 return make_unique<Foo>(5, "xy", 3.2);

}

auto unp = makeAFoo();

If we are not transferring ownership, then a unique_ptr should be
passed by reference or reference-to-const.

A shared_ptr may be passed by value arbitrarily. Passing by value
shares ownership.

2024-10-25 CS 311 Fall 2024

make_unique returns an
Rvalue, so we do not need
to use std::move here.

16

Node-Based Structures
Smart Pointers — Philosophy

Programmers have found that shared ownership is rarely needed.
It is true that, whenever you might use unique_ptr, it will also
work to use shared_ptr. On the other hand, using unique_ptr
helps the compiler find bugs for you—and it is more efficient.

Suggestions

▪ When you want a smart pointer, start by using unique_ptr.

▪ To transfer ownership, pass/return by value.

▪ Otherwise, pass by reference or reference-to-const, OR call get and
pass a regular pointer.

▪ If code does not compile because it tries to copy a unique_ptr:

▪ If you want to transfer ownership, then you might simply need to wrap

the unique_ptr in std::move.

▪ If you do not want to transfer ownership, then you can call get to obtain
a non-owning regular pointer and use that instead.

▪ If it turns out that you really need shared ownership, then do a global

search/replace: unique → shared

2024-10-25 CS 311 Fall 2024 17

More on Linked Lists

2024-10-25 CS 311 Fall 2024 18

2024-10-25 CS 311 Fall 2024

More on Linked Lists
Refresher [1/2]

Earlier, we looked at a node-based structure: the (Singly) Linked
List. Like an array, a Linked List stores a sequence of items.

Each Linked List node has a single data item and a pointer to the
next node, or a null pointer at the end of the list. We keep track
of a Linked List using its head pointer.

A Linked List is a forward-only sequential-access structure. To find
items, we follow pointers though the list. We cannot quickly find
the 100,000th item. Nor can we quickly find the previous item.

513 3 5 2

Head
Null pointer

3 1 3 5 2Array

Linked

List

5

Nodes

19

2024-10-25 CS 311 Fall 2024

More on Linked Lists
Refresher [2/2]

Why not always use (smart) arrays?

One reason: Linked Lists support fast insertion.

Suppose we have a sequence 3, 1, 5, 3, 5, 2.
We wish to insert a 7 before the first 5.

With an array, we move all later items up.
For a large array this can be very slow.

With a Linked List, if we
know the location,
insertion is fast.

For large datasets,
the speed-up can
be huge.

513 3 5 2

3 1 3 5 25

3 1 3 5 257

513 3 5 2

7

Array

Linked

List

20

2024-10-25 CS 311 Fall 2024

More on Linked Lists
More Advantages [1/2]

With Linked Lists, we can also do a fast splice:

Note that, if we allow for efficient splicing, then we cannot
efficiently keep track of a Linked List’s size.

Before

After

213243 1 55 14

22215 16 3 23

213243 1 55 14

22215 16 3 23

21

2024-10-25 CS 311 Fall 2024

More on Linked Lists
More Advantages [2/2]

With Linked Lists, iterators, pointers, and references to items will
always stay valid and never change what they refer to, as long
as the Linked List exists—unless we remove or change the item
referenced.

513 4 5 2

53 4 5 2

Iterator

Iterator

53 4 5 2

7

Iterator

Remove

Insert

22

More on Linked Lists
Comparison with Arrays [1/3]

Find the order of each of the following.
Assume good choices are made.

*For Singly Linked Lists,
insert/remove just after the
given position.

▪ Doubly Linked Lists can help.

**O(1) if no reallocate-and-copy.

▪ Pre-allocate to ensure this.

***For O(1), need a pointer to
end of list. Otherwise, O(n).
▪ This can be tricky.

▪ And, for remove @ end, it is
mostly impossible.

▪ Doubly Linked Lists can help.

2024-10-25 CS 311 Fall 2024

Smart Array Linked List

Look-up by index O(1) O(n)

Search sorted O(log n) O(n)

Search unsorted O(n) O(n)

Sort O(n log n) O(n log n)

Insert @ given pos O(n) O(1)*

Remove @ given pos O(n) O(1)*

Splice O(n) O(1)

Insert @ beginning O(n) O(1)

Remove @ beginning O(n) O(1)

Insert @ end O(n)**

amortized const

O(1) or O(n)***

Remove @ end O(1) O(1) or O(n)***

Traverse O(n) O(n)

We often find faster
with an array.

We often rearrange faster
with a Linked List.

What other
issues arise

when comparing
the two data
structures?

23

2024-10-25 CS 311 Fall 2024

More on Linked Lists
Comparison with Arrays [2/3]

Other Issues

▪  Linked Lists use more memory.

▪  When order is the same, Linked Lists are almost always slower.

▪  Arrays keep consecutive items in nearby memory locations.

▪ Many algorithms have the property that when they access a data item,

the following accesses are likely to be to the same or nearby items. This
property of an algorithm is called locality of reference.

▪ Once a memory location is accessed, the CPU cache can prefetch
nearby memory locations. With an array, these are likely to hold nearby

data items.

▪ Because of cache prefetching, an array can have a significant speed
advantage over a Linked List, when used with an algorithm that has

good locality of reference.

▪ ☺ With an array, iterators, pointers, and references to items can be
invalidated by reallocation. Also, insert/remove can change the
item they reference.

24

2024-10-25 CS 311 Fall 2024

More on Linked Lists
Comparison with Arrays [3/3]

A Moral for Our Story

▪ Two kinds of design decisions affect the efficiency of code:

▪ Deciding how to process data (algorithms).

▪ Deciding how to store data (data structures).

The latter often has the greater impact.

Very rough guidelines:

▪ Use arrays when we want fast look-up/search.

▪ Use Linked Lists when we want fast insert & delete (by iterator).

What if I
want all of
those to be

fast?

Stick around
for the rest

of the
semester!

25

2024-10-25 CS 311 Fall 2024

More on Linked Lists
Doubly Linked Lists [1/3]

We have been discussing the (Singly) Linked List.

Recall: in a Doubly Linked List, each node has two pointers, next
node (null at the end) and previous node (null at the beginning).

A Doubly Linked List typically has an end-of-list pointer. This can
be efficiently maintained, resulting in constant-time insert and
remove at the end of the list.

3

(Singly)

Linked List

Doubly

Linked List

1 5 4 5

3 1 5 4 5

End-of-list
pointer

26

2024-10-25 CS 311 Fall 2024

More on Linked Lists
Doubly Linked Lists [2/3]

With Doubly Linked Lists,
we can eliminate
asterisks.

*O(1) if no reallocate-and-copy.

▪ Pre-allocate to ensure this.

Smart Array Doubly
Linked List

Look-up by index O(1) O(n)

Search sorted O(log n) O(n)

Search unsorted O(n) O(n)

Sort O(n log n) O(n log n)

Insert @ given pos O(n) O(1)

Remove @ given pos O(n) O(1)

Splice O(n) O(1)

Insert @ beginning O(n) O(1)

Remove @ beginning O(n) O(1)

Insert @ end O(n)*

amortized const

O(1)

Remove @ end O(1) O(1)

Traverse O(n) O(n)

We often find faster
with an array.

We often rearrange faster
with a Linked List.

27

2024-10-25 CS 311 Fall 2024

More on Linked Lists
Doubly Linked Lists [3/3]

Doubly Linked Lists have essentially all the advantages of Singly
Linked Lists, plus some more.

▪ An end-of-list pointer can be maintained without trouble.

▪ They allow efficient insert/remove at both ends of the list.

▪ They allow efficient insert-before-this-node and remove-this-node.

▪ They allow efficient reverse iteration.

However, Doubly Linked Lists are a little slower.

▪ Constant-time operations remain O(1), but the constant is larger.

The Bottom Line

▪ Doubly Linked Lists are a good basis for a general-purpose generic
container type.

▪ Singly Linked Lists are more special-purpose (all those asterisks).

28

2024-10-25 CS 311 Fall 2024

More on Linked Lists
Implementation — Two Approaches

Two Approaches to Implementing a Linked List

▪ A Linked List package to be used by others.

▪ An internal-use Linked List: part of a
larger package, and not exposed to
client code.

Q. How would these be different? In particular, what classes might
we define in each case?

A1. First situation: several classes—container, node, iterator,
const_iterator, maybe others?

A2. Second situation: a node class—and probably nothing else.

You will probably never have
occasion to write the former—
except perhaps as practice. But
you may need to write the latter.

29

2024-10-25 CS 311 Fall 2024

More on Linked Lists
Implementation — CODE

We have already written an internal-use-style Singly Linked List, in
Arrays & Linked Lists.

Let’s rewrite this Linked List using smart pointers.

TO DO

▪ Following the suggestions in Node-Based Structures: Smart
Pointers, update our Linked List to include the following.

▪ An owning smart pointer.

▪ An insert-at-beginning operation.

▪ A remove-at-beginning operation.

▪ Exception-safety information.

Done. See llnode2.hpp.

See use_list2.cpp for

a program that uses this
Linked List.

See llnode.hpp.

30

More on Linked Lists
TO BE CONTINUED …

More on Linked Lists will be continued next time.

2024-10-25 CS 311 Fall 2024 31

	Slide 1: Node-Based Structures More on Linked Lists
	Slide 2: Unit Overview Data Handling & Sequences
	Slide 3
	Slide 4: Review Where Are We? — The Big Challenge
	Slide 5: Review Allocation & Efficiency [1/2]
	Slide 6: Review Allocation & Efficiency [2/2]
	Slide 7: Review Generic Containers
	Slide 8
	Slide 9: Node-Based Structures Introduction [1/3]
	Slide 10: Node-Based Structures Introduction [2/3]
	Slide 11: Node-Based Structures Introduction [3/3]
	Slide 12: Node-Based Structures Smart Pointers — Overview
	Slide 13: Node-Based Structures Smart Pointers — Creation
	Slide 14: Node-Based Structures Smart Pointers — Use like a Pointer
	Slide 15: Node-Based Structures Smart Pointers — Null
	Slide 16: Node-Based Structures Smart Pointers — Transferring & Sharing Ownership
	Slide 17: Node-Based Structures Smart Pointers — Philosophy
	Slide 18
	Slide 19: More on Linked Lists Refresher [1/2]
	Slide 20: More on Linked Lists Refresher [2/2]
	Slide 21: More on Linked Lists More Advantages [1/2]
	Slide 22: More on Linked Lists More Advantages [2/2]
	Slide 23: More on Linked Lists Comparison with Arrays [1/3]
	Slide 24: More on Linked Lists Comparison with Arrays [2/3]
	Slide 25: More on Linked Lists Comparison with Arrays [3/3]
	Slide 26: More on Linked Lists Doubly Linked Lists [1/3]
	Slide 27: More on Linked Lists Doubly Linked Lists [2/3]
	Slide 28: More on Linked Lists Doubly Linked Lists [3/3]
	Slide 29: More on Linked Lists Implementation — Two Approaches
	Slide 30: More on Linked Lists Implementation — CODE
	Slide 31: More on Linked Lists TO BE CONTINUED …

