
Exception Safety

CS 311 Data Structures and Algorithms

Lecture Slides

Monday, October 21, 2024

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2005–2024 Glenn G. Chappell

Some material contributed by Chris Hartman

continued

2024-10-21 CS 311 Fall 2024

Unit Overview
Data Handling & Sequences

Topics

▪ Data abstraction

▪ Introduction to Sequences

▪ Interface for a smart array

▪ Basic array implementation

▪ Exception safety

▪ Allocation & efficiency

▪ Generic containers

▪ Node-based structures

▪ More on Linked Lists

▪ Sequences in the C++ STL

▪ Stacks

▪ Queues





Smart Arrays

Linked Lists





(part)

2

Review

2024-10-21 CS 311 Fall 2024 3

2024-10-21 CS 311 Fall 2024

Review
Where Are We? — The Big Challenge

Our problem for most of the rest of the semester:

▪ Store: A collection of data items, all of the same type.

▪ Things we need to be able to do:

▪ Access items [single item: retrieve/find, all items: traverse].

▪ Add new item [insert].

▪ Eliminate existing item [delete].

▪ Time & space efficiency are desirable.

A solution to this problem is a container.

In a generic container, client code can specify the value type.

4

Review
Basic Array Implementation — Design Decisions

Class: FSArray (Frightfully Smart Array).

Value type: int, for now.

Iterators: pointers (int *, const int *).

Data members:

▪ Size of the array: size_type _size;

▪ Pointer to the array: value_type * _data;

Class invariants:

▪ Member _size is nonnegative.

▪ Member _data points to an int array, allocated with new [], owned
by *this, holding _size ints.

2024-10-21 CS 311 Fall 2024

As we will see, this
design actually has

significant flaws—which
may not be obvious.

We are
implementing
a Sequence as
a smart array.

5

2024-10-21 CS 311 Fall 2024

Review
Exception Safety — Introduction

The following issues are collectively called “safety” (in the context
of exceptions, “exception safety”):

▪ Does a function ever signal client code that an error has occurred,
and if it does …

▪ Are resource leaks avoided?

▪ Are data left in a usable state?

▪ If so, do we know anything about that state?

A function’s guarantee states the safety assurances it makes.

In this class, we will follow the convention that each function that
is called will do one of two things:

▪ Succeed and terminate normally (return), or

▪ Fail and throw an exception, adhering to its safety guarantee.

6

Review
Exception Safety — Three Standard Guarantees

A function’s guarantee will usually be one of the following three.

Basic Guarantee. Data remain in a usable state, and
resources are never leaked, even in the presence of exceptions.

▪ The minimum standard for all code.

Strong Guarantee. If the function throws an exception, then it
makes no changes that are visible to the client code.

▪ The guarantee we generally prefer.

No-Throw Guarantee. The function never throws an exception.

▪ Required in some special situations.

Each guarantee includes the earlier guarantee(s).

2024-10-21 CS 311 Fall 2024 7

Review
Exception Safety — Writing Exception-Safe Code [1/2]

To ensure that code is exception-safe, look at every place an
exception might be thrown. For each, make sure that, if an
exception is thrown, then either

▪ the exception is caught and handled internally, or

▪ the function throws and adheres to its guarantees.

A bad design may make exception safety impossible.

▪ Good design is part of exception safety.

▪ The Single Responsibility Principle (SRP)—every software
component should have exactly one well defined responsibility—can
be helpful here.

Rule. A non-const member function should not return an
object by value.

2024-10-21 CS 311 Fall 2024 8

Review
Exception Safety — Writing Exception-Safe Code [2/2]

DONE

▪ Figure out and document the exception-safety guarantees made by
all functions implemented so far in class FSArray.

▪ Should any of these guarantees be changed? Perhaps a higher
safety level can be achieved via a redesign/rewrite?

▪ The ctor from size offers the Strong Guarantee. We cannot raise its level

of safety, because it does dynamic allocation, and so may fail.

▪ All other functions written so far offer the No-Throw Guarantee.

▪ So all documented guarantees are as high as they can reasonably be.

▪ Write an exception-safe copy ctor for class FSArray, and document
its safety guarantee.

▪ The copy ctor offers the Strong Guarantee. Again, we cannot raise its

level, as it does dynamic allocation.

2024-10-21 CS 311 Fall 2024

Done. See the latest versions

of fsarray.h & fsarray.cpp.

9

Exception Safety

2024-10-21 CS 311 Fall 2024

continued

10

Exception Safety
noexcept — Noexcept Specification

C++11 introduced the keyword noexcept, to enable the following:

▪ We can declare that a function will not throw—or will not throw

except in certain circumstances.

▪ Code can test at runtime whether an expression is non-throwing.

Placing noexcept after a parameter list declares a function as
throwing no exceptions. This is a noexcept specification.

void foo() noexcept;

If a noexcept function throws, then the program terminates.

A destructor is implicitly marked noexcept, if the destructors of all
data members—and base classes, if any—are noexcept, and you
do not mark it otherwise.

2024-10-21 CS 311 Fall 2024

Destructors will be noexcept, unless there
is EVIL code lurking somewhere about.

11

Exception Safety
noexcept — When to Use It

Which functions should be noexcept?

▪ Destructor—but that is done for
you, unless there is EVIL code.

▪ Move ctor and move assignment operator.

▪ This enables a number of optimizations. For example, when a vector
runs out of space, it does a reallocate-and-copy. If the value type has a

noexcept move constructor, then the vector will move each data item;
otherwise, it will copy them. (Consider why it does this.)

▪ Any function called by a noexcept function outside a try-block.

▪ This is why we insisted on the swap member function being noexcept in
Assignment 2—and will insist again in Assignment 5. The move

assignment operator calls it, so it must be noexcept.

▪ Optionally, any function you are sure will never throw—even if that
function is later rewritten.

▪ Think of noexcept status as a permanent property of a function.

2024-10-21 CS 311 Fall 2024

Should I

write EVIL
code?

No!

12

Exception Safety
noexcept — More Usage

noexcept is also an operator. Put a parenthesized expression after
it. The result is true if the expression is noexcept.

if (noexcept(bar()))

 { … } // Do this if bar() never throws

A noexcept specification optionally includes a parenthesized
constant boolean expression. The function is noexcept if the
expression is true.

void foo2() noexcept(noexcept(bar()))

{

 bar();

}

2024-10-21 CS 311 Fall 2024

foo2 is noexcept
if bar is noexcept.

Code similar to this is how vector is able
to check for a noexcept move ctor.

13

This information is
included for completeness,
but you will probably not

use it much.

Exception Safety
noexcept — CODE

TO DO

▪ Write a noexcept move ctor for FSArray. If modifications to the
class would help, then make those modifications.

▪ Member _data is now allowed to be a null pointer if _size is zero. We
considered all the member functions, to make sure that they would

operate properly with this change in the class invariants. The ctor from

size and the copy ctor were changed.

▪ Now the move ctor can copy the data members of its parameter, and

then set the parameter’s _size to 0 and _data to nullptr.

▪ Make sure the exception-safety properties of the move ctor are
correctly documented.

▪ If any other functions should be noexcept, then mark them as such.

▪ The move assignment operator and member function swap, neither
written yet, have already been marked noexcept. We also marked as

noexcept some simple functions that should never have to do anything
that might throw: size, empty, begin, end.

2024-10-21 CS 311 Fall 2024

Done. See the latest versions of fsarray.h & fsarray.cpp. See

fsarray_main2.cpp for another program that uses FSArray.

This deals
with one of
the flaws in
our design.

14

2024-10-21 CS 311 Fall 2024

Exception Safety
Commit Functions — The Need

It can be tricky to offer the Strong Guarantee when a single
function modifies multiple parts of a large object.

▪ If we make several changes, and then we get an error, it can be
difficult to undo the changes already made.

▪ What if the undo operation itself may result in an error?

An Idea That Often Works

▪ Create an entirely new object with the new value.

▪ If there is an error, destroy the new object. The old object has not
changed, so there are no changes that are visible to the client.

▪ If there is no error, commit to our changes using a non-throwing
function.

Commit function: a non-throwing function used to finalize the
result of a computation.

Swap can be a useful commit function.

15

Exception Safety
Commit Functions — Swap [1/2]

A swap member function usually looks like this:

class MyClass {

 …

 void swap(MyClass & other) noexcept

 { … }

This should exchange the values of *this and other.

A swap member function can usually be written very easily: just
swap the data members. Ownership issues are easy to handle
properly (right?).

If we do it right, then we get a swap function that never throws
and is very fast.

2024-10-21 CS 311 Fall 2024 16

Exception Safety
Commit Functions — Swap [2/2]

class MyClass {

private:

 int _x;

 double * _y;

public:

 void swap(MyClass & other) noexcept;

We can implement MyClass::swap like this:

void MyClass::swap(MyClass & other) noexcept

{

 std::swap(_x, other._x);

 std::swap(_y, other._y);

}

2024-10-21 CS 311 Fall 2024

This is the same as the mswap
we discussed a few weeks ago

in Invisible Functions II.

When we make such a member
function public, we generally

name it “swap”. But it is not the
same as std::swap!

17

Exception Safety
Commit Functions — Usage [1/3]

Use a non-throwing swap function
to get the Strong Guarantee.

To give our object a new value:

▪ Try to construct a temporary

object holding this new value.

▪ If this fails, exit. No change.

▪ Exiting is automatic, if the
failing operation throws.

▪ If the construction succeeds,
then swap our object with the

temporary object holding the

new value.

▪ Swap never fails.

▪ Exit. The destructor of the

temporary object cleans up the
old value of our object.

▪ Destruction is automatic.

▪ It never fails (no EVIL code).

Above, boldface = code we write.

2024-10-21 CS 311 Fall 2024

*this

old value

temp

new value

*this

old value new value

*this

new value

*this

old value

*this

old value

Swap *this

& temp object

Exit. Temp is
destroyed.

Never
fails!

The arrow means
“has this value”.
It might represent
a pointer.

Try to construct
new value

Exception is thrown

temp

Never
fails!

Might fail

Strong
Guarantee!

FAILURE SUCCESS

18

2024-10-21 CS 311 Fall 2024

Exception Safety
Commit Functions — Usage [2/3]

We can set an object to a new value, while offering the Strong
Guarantee, if we can construct the new value with the Strong
Guarantee, and we have a non-throwing dctor and swap.

Procedure

▪ Try to construct a temporary object holding the new value.

▪ Swap with this temporary object.

Example: “clear” by swapping with a default-constructed
temporary object.

void MyClass::clear() // Strong Guarantee

{

 MyClass temp;

 swap(temp);

}

If there is a problem creating temp, then an exception is

thrown, and “nothing” happens (Strong Guarantee).

Otherwise, the values are swapped. *this gets its new value.
The old value of *this is cleaned up by temp’s destructor.

19

2024-10-21 CS 311 Fall 2024

Exception Safety
Commit Functions — Usage [3/3]

Now we can write a copy assignment operator that makes the
Strong Guarantee. We need:

▪ A copy ctor that makes the Strong Guarantee (usually possible).

▪ A swap member function that makes the No-Throw Guarantee
(usually easy).

▪ A dctor that makes the No-Throw Guarantee (of course).

// Strong Guarantee

MyClass & MyClass::operator=(const MyClass & rhs)

{

 MyClass temp(rhs);

 swap(temp);

 return *this;

} Always end an assignment operator this way.

Do the actual assignment:

 1. Try to construct a temporary copy of rhs.
 2. Swap with the temporary copy.

The old value is cleaned up by the destructor of
temp, which should never throw.

This is the same way we wrote copy
assignment back in Invisible Functions II.

And this is why it was written that way.

20

	Slide 1: Exception Safety
	Slide 2: Unit Overview Data Handling & Sequences
	Slide 3
	Slide 4: Review Where Are We? — The Big Challenge
	Slide 5: Review Basic Array Implementation — Design Decisions
	Slide 6: Review Exception Safety — Introduction
	Slide 7: Review Exception Safety — Three Standard Guarantees
	Slide 8: Review Exception Safety — Writing Exception-Safe Code [1/2]
	Slide 9: Review Exception Safety — Writing Exception-Safe Code [2/2]
	Slide 10
	Slide 11: Exception Safety noexcept — Noexcept Specification
	Slide 12: Exception Safety noexcept — When to Use It
	Slide 13: Exception Safety noexcept — More Usage
	Slide 14: Exception Safety noexcept — CODE
	Slide 15: Exception Safety Commit Functions — The Need
	Slide 16: Exception Safety Commit Functions — Swap [1/2]
	Slide 17: Exception Safety Commit Functions — Swap [2/2]
	Slide 18: Exception Safety Commit Functions — Usage [1/3]
	Slide 19: Exception Safety Commit Functions — Usage [2/3]
	Slide 20: Exception Safety Commit Functions — Usage [3/3]

