
Basic Array Implementation

CS 311 Data Structures and Algorithms

Lecture Slides

Wednesday, October 16, 2024

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2005–2024 Glenn G. Chappell

Some material contributed by Chris Hartman



2024-10-16 CS 311 Fall 2024

Unit Overview
Data Handling & Sequences

Topics

▪ Data abstraction

▪ Introduction to Sequences

▪ Interface for a smart array

▪ Basic array implementation

▪ Exception safety

▪ Allocation & efficiency

▪ Generic containers

▪ Node-based structures

▪ More on Linked Lists

▪ Sequences in the C++ STL

▪ Stacks

▪ Queues





Smart Arrays

Linked Lists



2



Review

2024-10-16 CS 311 Fall 2024 3



2024-10-16 CS 311 Fall 2024

Review
Where Are We? — The Big Challenge

Our problem for most of the rest of the semester:

▪ Store: A collection of data items, all of the same type.

▪ Things we need to be able to do:

▪ Access items [single item: retrieve/find, all items: traverse].

▪ Add new item [insert].

▪ Eliminate existing item [delete].

▪ Time & space efficiency are desirable.

A solution to this problem is a container.

In a generic container, client code can specify the value type.

4



2024-10-16 CS 311 Fall 2024

Review
Data Abstraction

Abstract data type (ADT):

▪ A collection of data, along with a set of operations on that data.

▪ Independent of implementation and programming language.

▪ Examples: Sequence, SortedSequence.

Data structure

▪ A construct within a programming language that stores a collection 
of data.

▪ Examples: Array, Linked List.

Class

▪ A feature in C++ and some other programming languages, aimed at 
facilitating OOP.

▪ In C++, we often implement a data structure using a class. 
However, we are not required to.

▪ Examples: std::vector<int>, std::list<double>.

5



2024-10-16 CS 311 Fall 2024

Review
Introduction to Sequences

A Sequence is a collection of items that are in some order.

We will restrict our attention to finite Sequences in which all items 
have the same type.

We defined an ADT Sequence.

▪ Data. An ordered list, all items the same type, indexed by 0, …, 
size–1.

▪ Operations. CreateEmpty, CreateSized, Destroy, Copy, 
LookUpByIndex, Size, Empty, Sort, Resize, InsertByPos, 
RemoveByPos, InsertBeg, RemoveBeg, InsertEnd, RemoveEnd, 
Splice, Traverse, Swap.

5 3 4 74 82 2 7 1 25

6



2024-10-16 CS 311 Fall 2024

Review
Interface for a Smart Array — Introduction

We wish to implement a Sequence in C++ using a smart array. It 
will know its size, be able to copy itself, etc. It will also be able 
to change its size.

Basic Ideas

▪ Use a C++ class. An object of the class
implements a single Sequence.

▪ Use iterators, operators, ctors, and the dctor in conventional ways.

▪ Every function in the interface should exist in order to implement, 
or somehow make possible, an ADT operation.

Your job in 
Assignment 5 will 
be to finish this 
implementation.

7



2024-10-16 CS 311 Fall 2024

Review
Interface for a Smart Array — Summary

Ctors & Dctor

▪ Default ctor

▪ Ctor given size

▪ Copy ctor

▪ Move ctor

▪ Dctor

Member Operators

▪ Copy assignment

▪ Move assignment

▪ Bracket

Global Operators

None

Named Global Functions

None

Named Public Member Functions

▪ size

▪ empty

▪ begin

▪ end

▪ resize

▪ insert

▪ erase

▪ push_back

▪ pop_back

▪ swap

All design decisions so far 
have been made exactly the 
same as in std::vector— 

except that vector has 
other public members, too.

8



Basic Array Implementation

2024-10-16 CS 311 Fall 2024 9



2024-10-16 CS 311 Fall 2024

Basic Array Implementation
Introduction

Now we begin implementing a smart array using a C++ class. Its 
member functions will be as in the interface previously 
described.

As a convenience, we will also define public member types, to help 
client code deal with the data.

The public interface will be all that client code sees.

▪ Data are accessed only through this interface.

▪ The package provides no functions to client code other than those 
specified in the interface.

▪ We can write any private members we want.

10



Basic Array Implementation
Design Decisions [1/2]

Call our class FSArray (Frightfully Smart Array).

What type should an array item be?

▪ Use int for the value type.

▪ This is just for now. You will make it generic in Assignment 5.

What type should the size of an array be?

▪ Use std::size_t for the size type.

How should we store the data?

▪ Store the data in a dynamically allocated array of int.

▪ Note. We could have used a separate RAII class, like IntArray.

How should we implement the iterators?

▪ Use pointers for iterators (int *, const int *).

What member types should we define?

▪ We want the types of all parameters and return values of package 
functions to be available to the client code.

▪ So: value_type, size_type, iterator, const_iterator.

2024-10-16 CS 311 Fall 2024 11



Basic Array Implementation
Design Decisions [2/2]

What data members should our array class have?

▪ Size of the array: size_type _size;

▪ Pointer to the array: value_type * _data;

What class invariants should it have?

▪ Member _size is nonnegative.

▪ Member _data points to an int array, allocated with new [], owned 
by *this, holding _size ints.

What should operator[] return? Should it be const or not?

▪ We need two versions: non-const and const.

▪ These return value_type &, const value_type &, respectively.

What should begin, end return? Should they be const or not?

▪ As with operator[], we need two versions: non-const and const.

▪ These return iterator, const_iterator, respectively.

Can we use automatically generated versions of the Big Five?

▪ No. We are directly managing an owned resource.

2024-10-16 CS 311 Fall 2024

As we will see, the 
design outlined on these 
two slides actually has 
significant flaws—which 

may not be obvious.

12



Basic Array Implementation
CODE

TO DO

▪ Write a skeleton form of class FSArray.

▪ The package header & source files: #ifndef, #include, etc.

▪ The class definition.

▪ Definitions of all public types.

▪ Prototypes and dummy definitions for all public functions. Use explicit 

and noexcept where appropriate.

▪ As time permits, begin implementing functionality.

▪ Declarations of data members and comments indicating class invariants.

▪ Definitions for functions that do not copy/move/swap or resize the array.

▪ Definitions for member functions push_back & pop_back.

We will improve FSArray over the next few days. In Assignment 5 
you will turn it into a generic container and finish it.

2024-10-16 CS 311 Fall 2024

Done. See fsarray.hpp & fsarray.cpp.

See fsarray_main.cpp for a program to 

compile the package with.

13


	Slide 1: Basic Array Implementation
	Slide 2: Unit Overview Data Handling & Sequences
	Slide 3
	Slide 4: Review Where Are We? — The Big Challenge
	Slide 5: Review Data Abstraction
	Slide 6: Review Introduction to Sequences
	Slide 7: Review Interface for a Smart Array — Introduction
	Slide 8: Review Interface for a Smart Array — Summary
	Slide 9
	Slide 10: Basic Array Implementation Introduction
	Slide 11: Basic Array Implementation Design Decisions [1/2]
	Slide 12: Basic Array Implementation Design Decisions [2/2]
	Slide 13: Basic Array Implementation CODE

