Basic Array Implementation

CS 311 Data Structures and Algorithms
Lecture Slides
Wednesday, October 16, 2024

Glenn G. Chappell
Department of Computer Science

University of Alaska Fairbanks
ggchappell@alaska.edu

© 2005-2024 Glenn G. Chappell
Some material contributed by Chris Hartman



Unit Overview
Data Handling & Sequences

Topics

v s
Vs
Vs

Data abstraction
Introduction to Sequences

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Interface for a smart array
Basic array implementation
Exception safety

Allocation & efficiency
Generic containers

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Node-based structures
More on Linked Lists

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Sequences in the C++ STL
Stacks

Queues

2024-10-16 CS 311 Fall 2024

~ Smart Arrays

> Linked Lists




Review

2024-10-16 CS 311 Fall 2024



Review
Where Are We? — The Big Challenge

Our problem for most of the rest of the semester:

= Store: A collection of data items, all of the same type.

= Things we need to be able to do:
= Access items [single item: retrieve/find, all items: traverse].
= Add new item [insert].
= Eliminate existing item [delete].

= Time & space efficiency are desirable.

A solution to this problem is a container.
In a generic container, client code can specify the value type.

2024-10-16 CS 311 Fall 2024



Review
Data Abstraction

Abstract data type (ADT):

= A collection of data, along with a set of operations on that data.
= Independent of implementation and programming language.
= Examples: Sequence, SortedSequence.

Data structure

= A construct within a programming language that stores a collection
of data.

= Examples: Array, Linked List.

Class

= A feature in C++ and some other programming languages, aimed at
facilitating OOP.

= In C++, we often implement a data structure using a class.
However, we are not required to.

= Examples: std::vector<int>, std::list<double>.

2024-10-16 CS 311 Fall 2024 5



Review
Introduction to Sequences

A Sequence is a collection of items that are in some order.

We will restrict our attention to finite Sequences in which all items
have the same type.

534 2287 4,75 1 2

We defined an ADT Sequence.
= Data. An ordered list, all items the same type, indexed by O, ...,
size-1.
= Operations. CreateEmpty, CreateSized, Destroy, Copy,
LookUpBylIndex, Size, Empty, Sort, Resize, InsertByPos,
RemoveByPos, InsertBeg, RemoveBeg, InsertEnd, RemoveEnd,
Splice, Traverse, Swap.

2024-10-16 CS 311 Fall 2024 6



Review
Interface for a Smart Array — Introduction

We wish to implement a Sequence in C++ using a smart array. It
will know its size, be able to copy itself, etc. It will also be able

to change its size.

Your job in
Assignment 5 will

Basic Ideas be to finish this

= Use a C++ class. An object of the class implementation.
implements a single Sequence.

= Use iterators, operators, ctors, and the dctor in conventional ways.

= Every function in the interface should exist in order to implement,
or somehow make possible, an ADT operation.

2024-10-16 CS 311 Fall 2024



Review

Interface for a Smart Array — Summary

Ctors & Dctor
= Default ctor
= Ctor given size
= Copy ctor
= Move ctor
= Dctor

Member Operators
= Copy assignment
= Move assignment
= Bracket

Global Operators
None

Named Global Functions
None

2024-10-16

Named Public Member Functions

CS 311 Fall 2024

size
empty
begin

end
resize
insert
erase
push back
pop back

swap

All design decisions so far

have been made exactly the

same as in std: :vector—
except that vector has
other public members, too.



Basic Array Implementation

2024-10-16 CS 311 Fall 2024



Basic Array Implementation
Introduction

Now we begin implementing a smart array using a C++ class. Its
member functions will be as in the interface previously

described.

As a convenience, we will also define public member types, to help
client code deal with the data.

The public interface will be all that client code sees.
= Data are accessed only through this interface.

= The package provides no functions to client code other than those
specified in the interface.

= We can write any private members we want.

2024-10-16 CS 311 Fall 2024 10



Basic Array Implementation
Design Decisions [1/2]

Call our class rFsarray (Frightfully Smart Array).
What type should an array item be?

= Use int for the value type.

= This is just for now. You will make it generic in Assignment 5.
What type should the size of an array be?

= Use std::size t for the size type.
How should we store the data?

= Store the data in a dynamically allocated array of int.

= Note. We could have used a separate RAII class, like IntArray.
How should we implement the iterators?

= Use pointers for iterators (int *, const int *).
What member types should we define?

= We want the types of all parameters and return values of package
functions to be available to the client code.

= S0: value type, size type, iterator, const iterator.

2024-10-16 CS 311 Fall 2024 11



Basic Array Implementation
Design Decisions [2/2]

What data members should our array class have?
= Size of the array: size type _size; As we will see, the

= Pointer to the array: value type * data; design outlined on these
- - two slides actually has

What class invariants should it have? significant flaws—which
= Member _size is nonnegative. may not be obvious.

= Member _data points to an int array, allocated with new [], owned
by *this, holding _size ints.

What should operator[] return? Should it be const or not?
= We need two versions: non-const and const.
= These return value type &, const value type &, respectively.
What should begin, end return? Should they be const or not?
= As with operator[], we need two versions: non-const and const.
= These return iterator, const iterator, respectively.
Can we use automatically generated versions of the Big Five?
= No. We are directly managing an owned resource.

2024-10-16 CS 311 Fall 2024 12



Basic Array Implementation
CODE

TO DO

= Write a skeleton form of class Fsarray.

= The package header & source files: #ifndef, #include, etc.
= The class definition.

= Definitions of all public types.

= Prototypes and dummy definitions for all public functions. Use explicit
and noexcept where appropriate.

= As time permits, begin implementing functionality.
= Declarations of data members and comments indicating class invariants.

= Definitions for functions that do not copy/move/swap or resize the array.
= Definitions for member functions push back & pop back.

Done. See fsarray.hpp & fsarray.cpp.

See fsarray main.cpp for a program to
compile the package with.

We will improve Fsarray over the next few days. In Assignment 5
you will turn it into a generic container and finish it.

2024-10-16 CS 311 Fall 2024 13



	Slide 1: Basic Array Implementation
	Slide 2: Unit Overview Data Handling & Sequences
	Slide 3
	Slide 4: Review Where Are We? — The Big Challenge
	Slide 5: Review Data Abstraction
	Slide 6: Review Introduction to Sequences
	Slide 7: Review Interface for a Smart Array — Introduction
	Slide 8: Review Interface for a Smart Array — Summary
	Slide 9
	Slide 10: Basic Array Implementation Introduction
	Slide 11: Basic Array Implementation Design Decisions [1/2]
	Slide 12: Basic Array Implementation Design Decisions [2/2]
	Slide 13: Basic Array Implementation CODE

