Basic Array Implementation

CS 311 Data Structures and Algorithms
Lecture Slides
Wednesday, October 16, 2024

Glenn G. Chappell
Department of Computer Science

University of Alaska Fairbanks
ggchappell@alaska.edu

© 2005-2024 Glenn G. Chappell
Some material contributed by Chris Hartman



Unit Overview
Data Handling & Sequences

Topics

v s
Vs
Vs

Data abstraction
Introduction to Sequences

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Interface for a smart array
Basic array implementation
Exception safety

Allocation & efficiency
Generic containers

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Node-based structures
More on Linked Lists

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Sequences in the C++ STL
Stacks

Queues

2024-10-16 CS 311 Fall 2024

~ Smart Arrays

> Linked Lists




Review

2024-10-16 CS 311 Fall 2024



Review
Where Are We? — The Big Challenge

Our problem for most of the rest of the semester:

= Store: A collection of data items, all of the same type.

= Things we need to be able to do:
= Access items [single item: retrieve/find, all items: traverse].
= Add new item [insert].
= Eliminate existing item [delete].

= Time & space efficiency are desirable.

A solution to this problem is a container.
In a generic container, client code can specify the value type.
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Review
Data Abstraction

Abstract data type (ADT):

= A collection of data, along with a set of operations on that data.
= Independent of implementation and programming language.
= Examples: Sequence, SortedSequence.

Data structure

= A construct within a programming language that stores a collection
of data.

= Examples: Array, Linked List.

Class

= A feature in C++ and some other programming languages, aimed at
facilitating OOP.

= In C++, we often implement a data structure using a class.
However, we are not required to.

= Examples: std::vector<int>, std::list<double>.
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Review
Introduction to Sequences

A Sequence is a collection of items that are in some order.

We will restrict our attention to finite Sequences in which all items
have the same type.

534 2287 4,75 1 2

We defined an ADT Sequence.
= Data. An ordered list, all items the same type, indexed by O, ...,
size-1.
= Operations. CreateEmpty, CreateSized, Destroy, Copy,
LookUpBylIndex, Size, Empty, Sort, Resize, InsertByPos,
RemoveByPos, InsertBeg, RemoveBeg, InsertEnd, RemoveEnd,
Splice, Traverse, Swap.
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Review
Interface for a Smart Array — Introduction

We wish to implement a Sequence in C++ using a smart array. It
will know its size, be able to copy itself, etc. It will also be able

to change its size.

Your job in
Assignment 5 will

Basic Ideas be to finish this

= Use a C++ class. An object of the class implementation.
implements a single Sequence.

= Use iterators, operators, ctors, and the dctor in conventional ways.

= Every function in the interface should exist in order to implement,
or somehow make possible, an ADT operation.
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Review

Interface for a Smart Array — Summary

Ctors & Dctor
= Default ctor
= Ctor given size
= Copy ctor
= Move ctor
= Dctor

Member Operators
= Copy assignment
= Move assignment
= Bracket

Global Operators
None

Named Global Functions
None
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size
empty
begin

end
resize
insert
erase
push back
pop back

swap

All design decisions so far

have been made exactly the

same as in std: :vector—
except that vector has
other public members, too.
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Basic Array Implementation
Introduction

Now we begin implementing a smart array using a C++ class. Its
member functions will be as in the interface previously

described.

As a convenience, we will also define public member types, to help
client code deal with the data.

The public interface will be all that client code sees.
= Data are accessed only through this interface.

= The package provides no functions to client code other than those
specified in the interface.

= We can write any private members we want.
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Basic Array Implementation
Design Decisions [1/2]

Call our class rFsarray (Frightfully Smart Array).
What type should an array item be?

= Use int for the value type.

= This is just for now. You will make it generic in Assignment 5.
What type should the size of an array be?

= Use std::size t for the size type.
How should we store the data?

= Store the data in a dynamically allocated array of int.

= Note. We could have used a separate RAII class, like IntArray.
How should we implement the iterators?

= Use pointers for iterators (int *, const int *).
What member types should we define?

= We want the types of all parameters and return values of package
functions to be available to the client code.

= S0: value type, size type, iterator, const iterator.
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Basic Array Implementation
Design Decisions [2/2]

What data members should our array class have?
= Size of the array: size type _size; As we will see, the

= Pointer to the array: value type * data; design outlined on these
- - two slides actually has

What class invariants should it have? significant flaws—which
= Member _size is nonnegative. may not be obvious.

= Member _data points to an int array, allocated with new [], owned
by *this, holding _size ints.

What should operator[] return? Should it be const or not?
= We need two versions: non-const and const.
= These return value type &, const value type &, respectively.
What should begin, end return? Should they be const or not?
= As with operator[], we need two versions: non-const and const.
= These return iterator, const iterator, respectively.
Can we use automatically generated versions of the Big Five?
= No. We are directly managing an owned resource.
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Basic Array Implementation
CODE

TO DO

= Write a skeleton form of class Fsarray.

= The package header & source files: #ifndef, #include, etc.
= The class definition.

= Definitions of all public types.

= Prototypes and dummy definitions for all public functions. Use explicit
and noexcept where appropriate.

= As time permits, begin implementing functionality.
= Declarations of data members and comments indicating class invariants.

= Definitions for functions that do not copy/move/swap or resize the array.
= Definitions for member functions push back & pop back.

Done. See fsarray.hpp & fsarray.cpp.

See fsarray main.cpp for a program to
compile the package with.

We will improve Fsarray over the next few days. In Assignment 5
you will turn it into a generic container and finish it.
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