
Where Are We?
Data Abstraction
Introduction to Sequences
Interface for a Smart Array

CS 311 Data Structures and Algorithms

Lecture Slides

Monday, October 14, 2024

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2005–2024 Glenn G. Chappell

Some material contributed by Chris Hartman

2024-10-14 CS 311 Fall 2024

Unit Overview
Algorithmic Efficiency & Sorting

Topics

▪ Analysis of Algorithms

▪ Introduction to Sorting

▪ Comparison Sorts I

▪ Asymptotic Notation

▪ Divide and Conquer

▪ Comparison Sorts II

▪ The Limits of Sorting

▪ Comparison Sorts III

▪ Non-Comparison Sorts

▪ Sorting in the C++ STL

2

Where Are We?

2024-10-14 CS 311 Fall 2024 3

2024-10-14 CS 311 Fall 2024

Where Are We?
From the First Day of Class: Course Overview — Goals

Upon successful completion of CS 311, you should:

▪ Have experience writing and documenting high-quality code.

▪ Understand proper error handling, enabling software
components to support robust, reliable applications.

▪ Be able to perform basic analyses of algorithmic efficiency,
including use of big-O and related notation.

▪ Be familiar with various standard algorithms, including those
for searching and sorting.

▪ Understand what data abstraction is, and how it relates to
software design.

▪ Be familiar with standard container data structures,
including implementations and relevant trade-offs.

We will also discuss
this further.

Primary goals to be addressed
for the rest of the semester

4

2024-10-14 CS 311 Fall 2024

Where Are We?
From the First Day of Class: Course Overview — Topics

The following topics will be covered, roughly in order:

▪ Advanced C++

▪ Software Engineering Concepts

▪ Recursion

▪ Searching

▪ Algorithmic Efficiency

▪ Sorting

▪ Data Abstraction

▪ Basic Abstract Data Types & Data Structures:

▪ Smart Arrays & Strings

▪ Linked Lists

▪ Stacks & Queues

▪ Trees (various kinds)

▪ Priority Queues

▪ Tables

▪ Briefly: external data, graph algorithms.

Goal: Practical generic containers

A container is a data structure holding
multiple items, usually all the same type.

A generic container is one that can hold
objects of client-specified type.

5

2024-10-14 CS 311 Fall 2024

Where Are We?
The Big Challenge

For most of the rest of the semester, we will be addressing the
following problem:

▪ We have a collection of data items, all of the same type, that we
wish to store.

▪ We need to be able to access items [retrieve/find, traverse], add
new items [insert] and eliminate items [delete].

▪ It would be nice if all of this were efficient in both time and space.

Solutions to this problem are called containers.

▪ There are many good ones.

▪ Which one we use depends on many factors, including what priority
we place on the various requirements above.

We are particularly interested in generic containers: containers
in which client code can specify the type of data to be stored.

6

2024-10-14 CS 311 Fall 2024

Unit Overview
Data Handling & Sequences

We now begin a unit on (1) dealing with data using proper error
handling and (2) Sequence data structures.

Topics

▪ Data abstraction

▪ Introduction to Sequences

▪ Interface for a smart array

▪ Basic array implementation

▪ Exception safety

▪ Allocation & efficiency

▪ Generic containers

▪ Node-based structures

▪ More on Linked Lists

▪ Sequences in the C++ STL

▪ Stacks

▪ Queues

After this, we will look at various kinds of trees.

Smart Arrays

Linked Lists

7

Data Abstraction

2024-10-14 CS 311 Fall 2024 8

Data Abstraction
Introduction [1/3]

Recall: when we do abstraction, we consider a software
component in terms of how and why it is used—what it looks
like from the outside—separate from its internal
implementation.

We have mostly been doing functional abstraction.

Now we concentrate on data abstraction.

2024-10-14 CS 311 Fall 2024

Component

Client

Client

Client

(defined by the
specification)

Implementation
(hidden from clients and

not part of the abstraction)

Interface

9

Data Abstraction
Introduction [2/3]

Data abstraction: applying abstraction to the structure of data.
Consider the form of the data without regard to how it is stored.

For example, a dataset may be a
sequence of items, in some order.

Or it may be a collection in which
we look up values by key.

2024-10-14 CS 311 Fall 2024

Key

Associated value

5 "ab"

7 "zk" 2 "xy"

1 "gg"
9 "rh"

5 5 54 87 2 1 21

begin end

Q. What value is associated with the key 1?

A. "gg".

Q. What value lies in position 3 (start at 0)?

A. 7.

10

2024-10-14 CS 311 Fall 2024

Data Abstraction
Introduction [3/3]

When we do data abstraction, we think about:

▪ The conceptual form of the data.

▪ The operations available on the data.

▪ The method used to access the data.

Important Concepts

▪ Interface

▪ Abstract data type (ADT)

11

2024-10-14 CS 311 Fall 2024

Data Abstraction
ADTs — Definitions

An abstract data type (ADT) is:

▪ a collection of data, along with

▪ a set of operations on that data.

ADTs are independent of implementation, and even of
programming language.

ADTs are heavily used in software development, but often they are
not explicitly mentioned.

A data structure is a construct within a programming language
that stores a collection of data.

C++ and some other programming languages include classes,
which facilitate object-oriented programming.

Classes are often used to implement data structures. However, one
can implement data structures without using classes.

12

Data Abstraction
ADTs — Example

Suppose we want to specify an ADT that holds three pieces of information.
Assume they have the same type, but make no other assumptions.

Call this ADT Triple.

What operations might Triple have? Here are some possibilities:

▪ Create with unspecified values.

▪ Create with specified values.

▪ Destroy.

▪ Copy (create or assign).

▪ Get a value.

▪ Change a value.

▪ Output (if each item can be output).

We might store a Triple in an obvious data structure: array of size three.

And we might implement this in C++ as a class with an array member and
member functions implementing Triple operations.

2024-10-14 CS 311 Fall 2024

Just these four allow us to do
all the other operations, too.

Eliminate any of the four,
and this is no longer true.

We say these four form a
complete, minimal
interface. See the next slide.

13

2024-10-14 CS 311 Fall 2024

Data Abstraction
Good Interfaces

When we implement a data structure, the idea of abstraction
requires that we have a well defined interface.

Designing a good interface can be difficult. Here are some
characteristics of a good interface.

An interface must be complete.

▪ All required operations are possible.

We often strive for interfaces that are minimal.

▪ Without redundant functionality.

We like interfaces that are convenient.

▪ The interface is not a pain to use.

We want to facilitate efficiency.

▪ Interface allows data to be dealt with efficiently.

We often want our interface to be generic.

▪ Avoid restricting possible implementations and internal data types.

These two often
pull in opposite
directions.

These two may
pull in opposite
directions.

14

Introduction to Sequences

2024-10-14 CS 311 Fall 2024 15

2024-10-14 CS 311 Fall 2024

Introduction to Sequences
What a Sequence Is

A Sequence is a collection of items that are in some order.

We will restrict our attention to finite Sequences in which all items
have the same type.

It may help to think of an array. However, there are other ways to
store a Sequence—for example, a Linked List.

Issues

▪ What operations do we perform on Sequences?

▪ How can we implement a Sequence?

▪ How do we decide which implementation best fits any given
circumstance?

5 3 4 74 82 2 7 1 25

16

Introduction to Sequences
ADT Sequence — Definition

ADT Sequence

▪ Data

▪ An ordered list, all items the same
type, indexed by 0, …, size–1.

▪ Operations

▪ CreateEmpty

▪ Create empty (size 0) Sequence.

▪ CreateSized

▪ Create Sequence of given size.

▪ Destroy

▪ Destroy Sequence.

▪ Copy

▪ Make copy of a Sequence.

▪ LookUpByIndex

▪ Given a valid index, return item—in
modifiable form, if appropriate.

▪ Size

▪ Return size of Sequence.

▪ Empty

▪ Is Sequence empty?

▪ Sort

▪ Sort items with some comparison.

▪ Resize
▪ Change size. Items 0, …, min(old_size,

new_size)–1 unchanged.

▪ InsertByPos
▪ Insert given value at a given position.

▪ RemoveByPos
▪ Remove item at a given position.

▪ InsertBeg

▪ Insert given value at the beginning.

▪ RemoveBeg

▪ Remove the first item.

▪ InsertEnd

▪ Like insertBeg, but at the end.

▪ RemoveEnd

▪ Like removeBeg, but at the end.

▪ Splice

▪ Move a contiguous subsequence from
one Sequence to another.

▪ Traverse

▪ Perform an operation on every item.

▪ Swap

▪ Exchange values of two Sequences.

2024-10-14 CS 311 Fall 2024

Position: think “iterator”,
although iterators may or
may not be used in practice.

17

2024-10-14 CS 311 Fall 2024

Introduction to Sequences
ADT SortedSequence — Introduction

Sometimes we want to ensure that a Sequence is always sorted.

This changes the operations available. Operations that mess up the
ordering are now disallowed. New operations, that make use of
the ordering, become possible.

We define another ADT: SortedSequence.

Roughly, a SortedSequence is a Sequence in which the items are
always kept sorted according to some comparison function.

18

Introduction to Sequences
ADT SortedSequence — Definition

ADT SortedSequence

▪ Data

▪ A list, in ascending order by some
comparison function, all items the
same type, indexed by 0, …, size–1.

▪ Operations

▪ CreateEmpty
▪ Create empty SortedSequence.

▪ Destroy
▪ Destroy SortedSequence.

▪ Copy
▪ Make copy of a SortedSequence.

▪ LookUpByIndex

▪ Given a valid index, return item—in
non-modifiable form.

▪ Size
▪ Return size of SortedSequence.

▪ Empty
▪ Is SortedSequence empty?

▪ InsertByValue
▪ Given a value, insert it.

▪ RemoveByValue

▪ Given a value, remove item(s) in
SortedSequence having an equivalent
value, if any exist.

▪ RemoveByPos
▪ Remove item at a given position.

▪ RemoveBeg
▪ Remove the first item.

▪ RemoveEnd
▪ Like removeBeg, but at the end.

▪ Traverse
▪ Perform an operation on every item.

▪ Swap

▪ Exchange values of two
SortedSequences.

▪ Find
▪ Given a value, find item(s) in

SortedSequence having an equivalent

value, if any exist.

2024-10-14 CS 311 Fall 2024 19

2024-10-14 CS 311 Fall 2024

Introduction to Sequences
ADT SortedSequence — What is it For?

The ordering of a SortedSequence is usually not of interest for its
own sake. Rather, we want items to be easy to find by value.

What can we do with efficient look-up by value?

▪ First, we can store Set data. In a Set, we only care whether an
item is in the container, not where it is.

Now suppose we have a SortedSequence whose items are pairs,
and a comparison function that compares only the first parts of
each pair. What is this good for?

▪ Key-based look-up.

▪ The first part of each pair is the key.

▪ “Arrays” (kind of), where the thing between the brackets does not
have to be a nonnegative integer: arr["abc"]

▪ That is, Tables (a.k.a. dictionaries, associative arrays, maps).

(102, "Mary Smith") (388, "John Jones") (497, "Zyzzy Zyzz") (562, "Ig Ogg") (732, "Abby Aggy")

20

2024-10-14 CS 311 Fall 2024

Introduction to Sequences
ADT SortedSequence — Position vs. Value Orientation

Despite the similarities of Sequence and SortedSequence, there is
a fundamental difference.

▪ Sequence handles an item primarily according to its position
(index or iterator) in the container.

▪ SortedSequence handles an item primarily according to its value.

Two Kinds of ADTs

▪ Sequence is a position-oriented ADT.

▪ SortedSequence is a value-oriented ADT.

SortedSequence is a bit inadequate as a value-oriented ADT.

▪ Typically, we do not care about SortedSequence being a Sequence.

▪ Rather, we want to use it to store Set or Table data.

▪ Maybe we should break it away from its Sequence origins?

Questions (to be examined later)

▪ What do we really want from a value-oriented ADT?

▪ How does one implement these in efficient ways?

21

Interface for a Smart Array

2024-10-14 CS 311 Fall 2024 22

2024-10-14 CS 311 Fall 2024

Interface for a Smart Array
Introduction

We wish to implement a Sequence in C++ using a smart array.

▪ It will know its size, be able to copy itself, etc.

▪ As in Assignment 2.

▪ It will also be able to change its size.

▪ We did not allow for this in Assignment 2.

▪ Recall that the ADT has resize and various insert/remove operations.

Basic Ideas

▪ Use a C++ class. An object of the class implements a single
Sequence.

▪ ADT operations will be implemented as member functions, global
functions, or combinations of these and Standard Library functions.

▪ Use iterators, operators, ctors, and the dctor in conventional ways.

▪ Every function in the interface should exist in order to implement,
or somehow make possible, an ADT operation.

We will work on this in class
for several days. You will
finish it in Assignment 5.

23

Interface for a Smart Array
By ADT Operation

ADT Operations

▪ CreateEmpty
▪ Default ctor.

▪ CreateSized
▪ Ctor given size.

▪ Destroy

▪ Dctor.

▪ Copy

▪ Copy ctor, copy assignment.

▪ Also optimizations: move ctor, move
assignment.

▪ LookUpByIndex
▪ Bracket operator.

▪ Size
▪ Member function size.

▪ Empty
▪ Member function empty.

▪ Sort
▪ Handle externally, with iterators. Use

member functions begin & end and
std::sort or std::stable_sort.

▪ Resize
▪ Member function resize.

▪ InsertByPos
▪ Member function insert.

▪ RemoveByPos
▪ Member function erase.

▪ InsertBeg
▪ insert with begin.

▪ RemoveBeg
▪ erase with begin.

▪ InsertEnd
▪ Member function push_back.

▪ RemoveEnd
▪ Member function pop_back.

▪ Splice
▪ Call resize, then copy data with op[]

or std::copy.

▪ Traverse
▪ Use member functions begin & end.

▪ This enables range-based for-loops.

▪ Swap
▪ Member function swap.

2024-10-14 CS 311 Fall 2024

std::remove exists and
does something different.
We could name this
member “remove”, but
that might lead to
confusion.

24

2024-10-14 CS 311 Fall 2024

Interface for a Smart Array
Summary

Ctors & Dctor

▪ Default ctor

▪ Ctor given size

▪ Copy ctor

▪ Move ctor

▪ Dctor

Member Operators

▪ Copy assignment

▪ Move assignment

▪ Bracket

Global Operators

None

Named Global Functions

None

Named Public Member Functions

▪ size

▪ empty

▪ begin

▪ end

▪ resize

▪ insert

▪ erase

▪ push_back

▪ pop_back

▪ swap

All design decisions so far
have been made exactly the
same as in std::vector—

except that vector has
other public members, too.

25

2024-10-14 CS 311 Fall 2024

Interface for a Smart Array
Details

For three of the member functions, it may not be so obvious what
the prototype should look like:

▪ insert

▪ Takes an iterator and an item: iter2 = myseq.insert(iter, val);

▪ Inserts the item just before the item referenced by the iterator—or at
the end, if the given iterator is the just-past-the-end iterator.

▪ Return value is an iterator referencing the inserted item.

▪ erase

▪ Takes an iterator: iter2 = myseq.erase(iter);

▪ Removes the item referenced by the iterator.

▪ Return value is an iterator to the item following the one removed—or the
end iterator, if the item removed was the last in the Sequence.

▪ swap

▪ Takes another Sequence, by reference: myseq.swap(otherseq);

▪ Exchanges the values of this Sequence and the given one.

▪ No return value.

▪ We discussed such a member function earlier in the semester.

26

	Slide 1: Where Are We? Data Abstraction Introduction to Sequences Interface for a Smart Array
	Slide 2: Unit Overview Algorithmic Efficiency & Sorting
	Slide 3
	Slide 4: Where Are We? From the First Day of Class: Course Overview — Goals
	Slide 5: Where Are We? From the First Day of Class: Course Overview — Topics
	Slide 6: Where Are We? The Big Challenge
	Slide 7: Unit Overview Data Handling & Sequences
	Slide 8
	Slide 9: Data Abstraction Introduction [1/3]
	Slide 10: Data Abstraction Introduction [2/3]
	Slide 11: Data Abstraction Introduction [3/3]
	Slide 12: Data Abstraction ADTs — Definitions
	Slide 13: Data Abstraction ADTs — Example
	Slide 14: Data Abstraction Good Interfaces
	Slide 15
	Slide 16: Introduction to Sequences What a Sequence Is
	Slide 17: Introduction to Sequences ADT Sequence — Definition
	Slide 18: Introduction to Sequences ADT SortedSequence — Introduction
	Slide 19: Introduction to Sequences ADT SortedSequence — Definition
	Slide 20: Introduction to Sequences ADT SortedSequence — What is it For?
	Slide 21: Introduction to Sequences ADT SortedSequence — Position vs. Value Orientation
	Slide 22
	Slide 23: Interface for a Smart Array Introduction
	Slide 24: Interface for a Smart Array By ADT Operation
	Slide 25: Interface for a Smart Array Summary
	Slide 26: Interface for a Smart Array Details

