
Non-Comparison Sorts
Sorting in the C++ STL

CS 311 Data Structures and Algorithms

Lecture Slides

Wednesday, October 9, 2024

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2005–2024 Glenn G. Chappell

Some material contributed by Chris Hartman

2024-10-09 CS 311 Fall 2024

Unit Overview
Algorithmic Efficiency & Sorting

Topics

▪ Analysis of Algorithms

▪ Introduction to Sorting

▪ Comparison Sorts I

▪ Asymptotic Notation

▪ Divide and Conquer

▪ Comparison Sorts II

▪ The Limits of Sorting

▪ Comparison Sorts III

▪ Non-Comparison Sorts

▪ Sorting in the C++ STL

















2

Review

2024-10-09 CS 311 Fall 2024 3

2024-10-09 CS 311 Fall 2024

Review
Introduction to Sorting — Overview of Algorithms

Sorting Algorithms Covered

▪ Quadratic-Time [O(n2)] Comparison Sorts

▪ Bubble Sort

▪ Insertion Sort

▪ Quicksort

▪ Log-Linear-Time [O(n log n)] Comparison Sorts

▪ Merge Sort

▪ Heap Sort (mostly later in semester)

▪ Introsort

▪ Special Purpose—Not Comparison Sorts

▪ Pigeonhole Sort

▪ Radix Sort











4

2024-10-09 CS 311 Fall 2024

Review
Comparison Sorts II — Merge Sort

Merge Sort: recursively sort top & bottom halves of list, merge.

Analysis

▪ Efficiency: Θ(n log n). Avg same. ☺

▪ Requirements on Data: Works for
Linked Lists, etc. ☺

▪ Space Efficiency: Θ(log n) space for
recursion. Iterative version is in-place
for Linked List. Θ(n) space for array.
/☺/

▪ Stable: Yes. ☺

▪ Performance on Nearly Sorted Data: Not better or worse. 

Notes

▪ Practical & often used.

▪ Fastest known for (1) stable sort, (2) sorting a Linked List.

3 1 3 5 25 3

1 3 2 3 35 5

1 2 3 3 53 5

Sort
(recurse)

Sort
(recurse)

Stable Merge

See merge_sort.cpp.

5

2024-10-09 CS 311 Fall 2024

Review
Comparison Sorts III — Quicksort, Better Quicksort

Quicksort: choose pivot, partition, recursively sort sublists.

Analysis

▪ Efficiency: Θ(n2).  Avg Θ(n log n). ☺☺

▪ Requirements on Data: Random-access. 

▪ Space: Θ(log n) with tail-recursion
elimination. 

▪ Stable: No. 

▪ On Nearly Sorted Data: mostly
Θ(n log n) with Median-of-3. 

Common optimizations:

▪ Choose pivot with Median-of-3 or similar.

▪ Make larger recursive call last, do tail-recursion elimination.

▪ Do not sort small sublists; finish with Insertion Sort (maybe).

1 3 5 25 33

Sort
(recurse)

Sort
(recurse)

1 3 52 5 3

2 3 31 5 53

Partition
Pivot

Pivot

3

See quicksort1.cpp,

quicksort2.cpp.

6

Review
Comparison Sorts III — Introsort

The best optimization of all turns Quicksort into Introsort.

Introspection. An algorithm tracks its own performance. If this
becomes poor, switch to an algorithm with a faster worst case.

Heap Sort

▪ Log-linear-time sort. In place. Requires random-access data.

▪ To be discussed in detail later in the semester.

Apply introspection to Quicksort to get Introsort.

▪ Track recursion depth; eliminated tail calls still count! If depth
exceeds 2 log2n, then switch to Heap Sort for the current sublist.

▪ Worst case: Θ(n log n). Average-case time as good as Quicksort.

▪ Other properties essentially the same as Quicksort.

2024-10-09 CS 311 Fall 2024 7

Non-Comparison Sorts

2024-10-09 CS 311 Fall 2024 8

2024-10-09 CS 311 Fall 2024

Non-Comparison Sorts
Pigeonhole Sort — Description

Suppose we are given a list to sort, and:

▪ Keys lie in a small fixed set of values.

▪ Keys can be used to index an array.

Keys might be small-ish nonnegative integers, characters, etc.

Procedure

▪ Make an array of lists—called buckets—one for each possible key.
Each bucket holds items of the same type as those in the given list;
it must be expandable to the size of the given list. Initialize each
bucket to an empty list.

▪ Iterate through the given list; insert each item at the end of the
bucket corresponding to its key.

▪ Copy items in each bucket, in order, back to the original list.

This algorithm has many names. One of them is Pigeonhole Sort.

9

2024-10-09 CS 311 Fall 2024

Non-Comparison Sorts
Pigeonhole Sort — Data Structure

How should we store each bucket? We want efficient operations:

▪ Insert a new item at the end of a bucket.

▪ Traverse (access each item in) a bucket in forward order.

std::vector works.

If each bucket is a resizable array like vector, then insert-at-end
may require a slow reallocate-and-copy. This does not happen
often, so inserting n items at the end is still O(n) time.

However, if we pre-allocate memory, then insert-at-end is constant
time. Pre-allocate in a vector with member function reserve.

vector<Foo> vv;

vv.reserve(BIGSIZE); // Does not change size of vv

10

2024-10-09 CS 311 Fall 2024

Non-Comparison Sorts
Pigeonhole Sort — CODE

TO DO

▪ Look at an implementation of Pigeonhole Sort for small-ish positive
integers.

▪ Try pre-allocating memory for the buckets using reserve. Does this
make the sort faster?

Pigeonhole Sort is fast, but not very useful. But we can design a
more useful sort based on it: Radix Sort.

First we analyze Pigeonhole Sort.

See pigeonhole_sort.cpp.

11

2024-10-09 CS 311 Fall 2024

Non-Comparison Sorts
Pigeonhole Sort — Analysis

Efficiency ☺☺☺

▪ Pigeonhole Sort is Θ(n).

▪ Pigeonhole Sort also has an average-case time of Θ(n) [obviously].

Requirements on Data 

▪ Pigeonhole Sort does not require random-access data.

▪ Pigeonhole Sort places very strong requirements on keys:

▪ Keys must belong to a small, fixed set of values.

▪ We must be able to index an array using keys.

Space Usage 

▪ Pigeonhole Sort requires an array of buckets: Θ(n) additional space.

Stability ☺

▪ Pigeonhole Sort is stable.

Performance on Nearly Sorted Data 

▪ Pigeonhole Sort is not significantly faster or slower on nearly sorted
data.

How can this be true? Didn’t we prove it was
impossible? More on this coming up.

12

Non-Comparison Sorts
Radix Sort — Description [1/2]

Suppose we want to sort a list whose keys are short sequences:

▪ Short strings—sequences of characters.

▪ Nonnegative integers, each considered as a sequence of digits.

▪ Short sequences of some other kind.

Requirements

▪ Each sequence must be no longer than some fixed length.

▪ Entries in each sequence must be valid keys for Pigeonhole Sort.

We will refer to a sequence as a string. Entries are characters.

Our algorithm will arrange the list in lexicographic order.

▪ This means sort first by first character, then by second, etc.

▪ For strings of lower-case letters, this is alphabetical order.

▪ For nonegative integers with leading zeroes, this is numerical order.

2024-10-09 CS 311 Fall 2024 13

Non-Comparison Sorts
Radix Sort — Description [2/2]

Radix Sort sorts a list with keys that are short sequences, called
strings. Each item in a string is called a character. The list is
sorted in lexicographic order. The strings should all be the same
length. If they are not, then pad the shorter strings with extra
characters—or treat them as if they are padded.

Procedure

▪ Pigeonhole Sort the list using the last character of each string as
the key.

▪ Take the list resulting from the previous step and Pigeonhole Sort it,
using the next-to-last character as the key. This must be done in a
stable manner.

▪ Then Pigeonhole Sort by the character before that, stably.

▪ And so on.

▪ After sorting by the first character, the list is sorted.

2024-10-09 CS 311 Fall 2024 14

2024-10-09 CS 311 Fall 2024

Non-Comparison Sorts
Radix Sort — Example

List to be sorted.

▪ 583 226 508 183 90 223 924 4 426 106 624

Treat each “string” as if it were a 3-digit number. So 4 is treated
as 004.

First, Pigeonhole Sort by the units digit.

▪ 90 583 183 223 924 4 624 226 426 106 508

Then Pigeonhole Sort this new list, based on the tens digit, in a
stable manner (note that the tens digit of 4 is 0).

▪ 4 106 508 223 924 624 226 426 583 183 90

Again, based on the hundreds digit.

▪ 4 90 106 183 223 226 426 508 583 624 924

And now the list is sorted.

Nonempty buckets
are underlined

15

2024-10-09 CS 311 Fall 2024

Non-Comparison Sorts
Radix Sort — CODE

TO DO

▪ Look at an implementation of Radix Sort for positive integers with
an upper limit on their value.

See radix_sort.cpp.

16

2024-10-09 CS 311 Fall 2024

Non-Comparison Sorts
Radix Sort — Analysis [1/3]

How Fast is Radix Sort?

▪ Fix the set of characters and the length of a string.

▪ Each sorting pass is a Pigeonhole Sort with one bucket for each
possible character: Θ(n).

▪ And there are a fixed number of passes.

▪ Therefore, like Pigeonhole Sort, Radix Sort is Θ(n): linear time.

How is this possible?

▪ Pigeonhole Sort and Radix Sort are sorting algorithms. However,
they are not general-purpose comparison sorts.

▪ Both place restrictions on the values to be sorted: not general-purpose.

▪ Both get information about values in ways other than making a

comparison: not comparison sorts.

▪ So our proof that Ω(n log n) comparisons were required in the worst
case, does not apply.

Important!

17

2024-10-09 CS 311 Fall 2024

Non-Comparison Sorts
Radix Sort — Analysis [2/3]

Efficiency ☺☺☺

▪ Radix Sort is Θ(n)—for strings of a fixed size.

▪ Radix Sort also has an average-case time of Θ(n) [obviously].

Requirements on Data 

▪ Radix Sort does not require random-access data.

▪ However, Radix Sort places strong requirements on keys:

▪ Keys are strings (broadly defined) of at most some small, fixed length.

▪ Characters (items in a “string”) are legal keys for Pigeonhole Sort.

▪ Characters belong to a small, fixed set of values.

▪ We must be able to index an array using characters.

Space Usage 

▪ Radix Sort requires an array of buckets: Θ(n) additional space.

Stability ☺

▪ Radix Sort is stable.

Performance on Nearly Sorted Data 

▪ Radix Sort is not significantly faster or slower on nearly sorted data.

18

2024-10-09 CS 311 Fall 2024

Non-Comparison Sorts
Radix Sort — Analysis [3/3]

In practice, Radix Sort is not quite as fast as it might seem.

There is a hidden logarithm. The number of passes required is
equal to the length of a string, which is something like the
logarithm of the number of possible values a string can have.

So if we consider Radix Sort applied to a list in which all the values
can be different, then the length of a string needs to be larger,
for larger lists. Thought of in this way, Radix Sort lies in the
same efficiency class as Merge Sort and Introsort.

But Radix Sort is still quite fast.

19

2024-10-09 CS 311 Fall 2024

Non-Comparison Sorts
Radix Sort — Final Note

Lastly, Radix Sort is easy to implement well.

Why have we covered algorithms like Merge Sort and Introsort?

▪ So you will know how things work “under the hood”, and you will be
aware of issues like stability, recursion depth, etc.

▪ As examples of different ways to solve a single problem.

▪ As practice in analyzing algorithms.

But not because you will need to write them!

A top-notch Merge Sort or Introsort is a serious project. And it is
typically already written; use your language’s standard library!

But you can write a good Radix Sort.

And in some special cases, Radix Sort
can be worth writing.

500 million records

to sort by ZIP
Code? Radix Sort

is a good choice.

20

Sorting in the C++ STL

2024-10-09 CS 311 Fall 2024 21

2024-10-09 CS 311 Fall 2024

Sorting in the C++ STL
Overview

The C++ STL includes seven sorting algorithms:

▪ Global function std::sort.

▪ Global function std::stable_sort.

▪ Member function sort of std::list<T>.

▪ Member function sort of std::forward_list<T>.

▪ Global function std::partial_sort.

▪ Global function std::partial_sort_copy.

▪ Combination of two global functions: std::make_heap &
std::sort_heap.

We briefly cover each of the seven.

Then we look at lambda functions, which can be used to specify a
custom comparison.

Lastly, we look closer at how the first few algorithms are used.

22

Sorting in the C++ STL
In Brief [1/4]

All STL sorting algorithms are log-linear time, except where noted.
All take an optional comparison as an additional argument.

Global function std::sort (<algorithm>)

▪ Takes a range: 2 random-access iterators.

▪ Not stable.

▪ Intended algorithm: Introsort.

Global function std::stable_sort (<algorithm>)

▪ Takes a range: 2 random-access iterators.

▪ Additional space: Θ(n)*.

▪ *If sufficient space for a buffer cannot be allocated, then the time is
allowed to be slower: Θ(n [log n]2).

▪ Intended algorithm: Merge Sort, with the general-sequence version
of Stable Merge—or a slower in-place version of Stable Merge, if the
buffer cannot be allocated.

2024-10-09 CS 311 Fall 2024 23

2024-10-09 CS 311 Fall 2024

Sorting in the C++ STL
In Brief [2/4]

Member function sort of std::list<T>

▪ Sorts the container it is called on.

▪ Takes no arguments.

▪ Stable.

▪ Intended algorithm: Merge Sort, with the Linked-List version of
Stable Merge.

Member function sort of std::forward_list<T>

▪ Sorts the container it is called on.

▪ Takes no arguments.

▪ Stable.

▪ Intended algorithm: Merge Sort, with the Linked-List version of
Stable Merge.

std::list<T> is a
Doubly Linked List.

std::forward_list<T>
is a Singly Linked List.

24

2024-10-09 CS 311 Fall 2024

Sorting in the C++ STL
In Brief [3/4]

Global function std::partial_sort (<algorithm>)

▪ Takes 3 random-access iterators (first, middle, last).

▪ Not stable.

▪ Is more general than sorting a range. After call:

▪ [first, middle) contains low items, in sorted order.

▪ [middle, last) contains high items, in unspecified
order.

▪ Intended algorithm: variant of Heap Sort.

Global function std::partial_sort_copy (<algorithm>)

▪ Takes 2 ranges: 4 iterators, last 2 must be random-access.

▪ Not stable.

▪ Is more general than sorting a range. After call:

▪ Second range contains low items—as many as it can hold—from first

range, in sorted order.

▪ Intended algorithm: variant of Heap Sort.

The remaining STL
sorts involve Heap
Sort. We discuss

these briefly now; we
cover Heap Sort later

in the semester.

25

2024-10-09 CS 311 Fall 2024

Sorting in the C++ STL
In Brief [4/4]

Combination of two global functions: std::make_heap &
std::sort_heap (<algorithm>)

▪ Both take a range: 2 random-access iterators. This should be the
same range for both function calls.

▪ Combination is Θ(n log n) time. Not stable.

▪ Algorithm used: Heap Sort.

Again, all STL sorting algorithms take an optional comparison as an
additional argument. Those optional comparisons can be
specified conveniently using lambda functions.

Next we look at these.

26

Sorting in the C++ STL
Lambda Functions — Introduction

A lambda function is a function with no name.

In C++, create a lambda function as follows:

▪ Start with a pair of brackets: []

▪ Then a normal function parameter list and
function body.

▪ The return type is not required.

A lambda function that takes two ints and returns their sum:

[](int a, int b)

{

 return a+b;

}

Lambda functions can be defined inside other functions.

2024-10-09 CS 311 Fall 2024

The term comes from
the Lambda Calculus

[Alonzo Church, 1930s],
a mathematical

formalism in which a
function begins with the
Greek letter lambda (λ).

A C++ lambda function is
technically an object, not a

function. Officially, it is called
a lambda expression. Or
we can avoid the issue and

just call it a lambda.

27

Sorting in the C++ STL
Lambda Functions — Storing [1/2]

We can store a lambda function in an auto variable.

auto add = [](int a, int b) { return a+b; };

cout << add(2, 3); // Call like a normal function

To give it a definite type, use std::function (<functional>), a
wrapper for functions and function-like objects.

#include <functional>

using std::function;

function<int(int,int)> add =

 [](int a, int b){ return a+b; };

cout << add(2, 3); // Call like a normal function

2024-10-09 CS 311 Fall 2024

Return type &
passing method

Parameter types &
passing methods

Semicolon
at the end
of a variable
declaration

28

Sorting in the C++ STL
Lambda Functions — Storing [2/2]

Passing a lambda to a function:

template<typename Func>

void foo(Func f)

{

 cout << f(2, 3);

}

auto add = [](int a, int b){ return a+b; };

foo(add);

We can rewrite the last two lines to avoid using a variable:

foo([](int a, int b){ return a+b; });

2024-10-09 CS 311 Fall 2024 29

Sorting in the C++ STL
Lambda Functions — Capture [1/2]

By default, a lambda function is prohibited from accessing most
variables other than its own.

int k = 3;

auto mult = [](int n){ return k*n; }; // COMPILE ERROR!

Give a lambda access to outside variables, as they are at the point
the lambda is defined, by capturing them.

auto mult_cp = [k](int n) { return k*n; };

auto mult_ref = [&k](int n) { return k*n; };

2024-10-09 CS 311 Fall 2024

Inaccessible variable

Capture by reference: the lambda’s k is an alias. If the
outside k changes, then the lambda sees the changed value.
If the outside k goes away, then the lambda has a problem.

Capture by copy (“by value”): the lambda gets a copy of k.

30

Sorting in the C++ STL
Lambda Functions — Capture [2/2]

Here are some fancier capture lists.

[a,b,&c,&d](int n){ … // Capture a, b by copy,

 // c, d by reference

[=](int n){ … // Capture any needed by copy

[&](int n){ … // Capture any needed by reference

[=,&c,&d](int n){ … // Capture c, d by reference,

 // any other needed by copy

[&,a,b](int n){ … // Capture a, b by copy,

 // any other needed by reference

2024-10-09 CS 311 Fall 2024

I mostly
use these two.

31

2024-10-09 CS 311 Fall 2024

Sorting in the C++ STL
Using the Algorithms — Ordinary Usage

Call algorithm std::sort with two random-access iterators:

vector<int> vv;

sort(begin(vv), end(vv)); // Ascending order

… or two random-access iterators and a comparison. For
descending order, use std::greater (<functional>).

sort(begin(vv), end(vv),

 greater<int>()); // Descending order

std::stable_sort is used the same way.

Default constructor call. std::greater<int> is a
type, but we are only allowed to pass an object.

32

2024-10-09 CS 311 Fall 2024

Sorting in the C++ STL
Using the Algorithms — Custom Comparison

A custom comparison can be written using a lambda function.

▪ This should take two parameters of the type of the items being
sorted. Pass these by value or reference-to-const, as appropriate.

▪ It should return bool: true if the value of the first parameter must
come before the value of the second (think operator<).

vector<pair<int, string>> data;

stable_sort(begin(data), end(data), // Custom order

 [](const pair<int, string> & a,

 const pair<int, string> & b)

 {

 return a.first < b.first; // Sort by int part

 }

);

Closing parenthesis and semicolon for the std::stable_sort call.

A lambda definition is always inside a statement. Such a statement
needs to end the way any statement ends.

33

2024-10-09 CS 311 Fall 2024

Sorting in the C++ STL
Using the Algorithms — Sorting Linked Lists

When sorting a std::list, use the sort member function:

#include <list>

using std::list;

#include <functional>

using std::greater;

list<double> myList;

myList.sort(); // Ascending order

myList.sort(greater<double>()); // Descending order

myList.sort([](double a, double b) // Custom order

{ …

Sorting a std::forward_list works the same way.

34

Sorting in the C++ STL
Using the Algorithms — CODE

TO DO

▪ Look at some code that uses STL sorting algorithms with custom
comparison functions.

A number of other STL algorithms take optional comparisons.
These are specified in the same way.

▪ Binary Search (std::binary_search, std::lower_bound, …)

▪ Sort testing (std::is_sorted, …)

▪ Stable Merge (std::merge, …)

▪ Maximum/minimum (std::max, std::min, std::max_element, …)

▪ Etc.

2024-10-09 CS 311 Fall 2024

See comparison.cpp.

35

	Slide 1: Non-Comparison Sorts Sorting in the C++ STL
	Slide 2: Unit Overview Algorithmic Efficiency & Sorting
	Slide 3
	Slide 4: Review Introduction to Sorting — Overview of Algorithms
	Slide 5: Review Comparison Sorts II — Merge Sort
	Slide 6: Review Comparison Sorts III — Quicksort, Better Quicksort
	Slide 7: Review Comparison Sorts III — Introsort
	Slide 8
	Slide 9: Non-Comparison Sorts Pigeonhole Sort — Description
	Slide 10: Non-Comparison Sorts Pigeonhole Sort — Data Structure
	Slide 11: Non-Comparison Sorts Pigeonhole Sort — CODE
	Slide 12: Non-Comparison Sorts Pigeonhole Sort — Analysis
	Slide 13: Non-Comparison Sorts Radix Sort — Description [1/2]
	Slide 14: Non-Comparison Sorts Radix Sort — Description [2/2]
	Slide 15: Non-Comparison Sorts Radix Sort — Example
	Slide 16: Non-Comparison Sorts Radix Sort — CODE
	Slide 17: Non-Comparison Sorts Radix Sort — Analysis [1/3]
	Slide 18: Non-Comparison Sorts Radix Sort — Analysis [2/3]
	Slide 19: Non-Comparison Sorts Radix Sort — Analysis [3/3]
	Slide 20: Non-Comparison Sorts Radix Sort — Final Note
	Slide 21
	Slide 22: Sorting in the C++ STL Overview
	Slide 23: Sorting in the C++ STL In Brief [1/4]
	Slide 24: Sorting in the C++ STL In Brief [2/4]
	Slide 25: Sorting in the C++ STL In Brief [3/4]
	Slide 26: Sorting in the C++ STL In Brief [4/4]
	Slide 27: Sorting in the C++ STL Lambda Functions — Introduction
	Slide 28: Sorting in the C++ STL Lambda Functions — Storing [1/2]
	Slide 29: Sorting in the C++ STL Lambda Functions — Storing [2/2]
	Slide 30: Sorting in the C++ STL Lambda Functions — Capture [1/2]
	Slide 31: Sorting in the C++ STL Lambda Functions — Capture [2/2]
	Slide 32: Sorting in the C++ STL Using the Algorithms — Ordinary Usage
	Slide 33: Sorting in the C++ STL Using the Algorithms — Custom Comparison
	Slide 34: Sorting in the C++ STL Using the Algorithms — Sorting Linked Lists
	Slide 35: Sorting in the C++ STL Using the Algorithms — CODE

