
Comparison Sorts III

CS 311 Data Structures and Algorithms

Lecture Slides

Monday, October 7, 2024

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2005–2024 Glenn G. Chappell

Some material contributed by Chris Hartman

continued

2024-10-07 CS 311 Fall 2024

Unit Overview
Algorithmic Efficiency & Sorting

Topics

▪ Analysis of Algorithms

▪ Introduction to Sorting

▪ Comparison Sorts I

▪ Asymptotic Notation

▪ Divide and Conquer

▪ Comparison Sorts II

▪ The Limits of Sorting

▪ Comparison Sorts III

▪ Non-Comparison Sorts

▪ Sorting in the C++ STL













(part)



2

Review

2024-10-07 CS 311 Fall 2024 3

2024-10-07 CS 311 Fall 2024

Review
Analysis of Algorithms

Useful Rules

▪ Rule of Thumb. For nested “real” loops, order is O(nt), where t is
the number of nested loops.

▪ Addition Rule. O(f(n)) + O(g(n)) is either O(f(n)) or O(g(n)),
whichever is larger. And similarly for Θ. This works when adding up
any fixed, finite number of terms.

Using Big-O In Words

O(1) Constant time

O(log n) Logarithmic time

O(n) Linear time

O(n log n) Log-linear time

O(n2) Quadratic time

O(cn), for some c > 1 Exponential time

Cannot read
all of input

Probably
not scalable

Faster

Slower

4

2024-10-07 CS 311 Fall 2024

Review
Introduction to Sorting — Overview of Algorithms

Sorting Algorithms Covered

▪ Quadratic-Time [O(n2)] Comparison Sorts

▪ Bubble Sort

▪ Insertion Sort

▪ Quicksort

▪ Log-Linear-Time [O(n log n)] Comparison Sorts

▪ Merge Sort

▪ Heap Sort (mostly later in semester)

▪ Introsort

▪ Special Purpose—Not Comparison Sorts

▪ Pigeonhole Sort

▪ Radix Sort







(part)

5

2024-10-07 CS 311 Fall 2024

Review
Asymptotic Notation

g(n) is:

▪ O(f(n)) if g(n) ≤ k×f(n) …

▪ Ω(f(n)) if g(n) ≥ k×f(n) …

▪ Θ(f(n)) if both are true—possibly with different values of k.

In an algorithmic context, g(n) might be:

▪ The maximum number of basic operations performed by the
algorithm when given input of size n.

▪ The maximum amount of additional space required.

In-place means using O(1) additional space.

1 n n log n n2 5n2 n2 log n n3 n4

O(n2) YES YES YES YES YES no no no

Ω(n2) no no no YES YES YES YES YES

Θ(n2) no no no YES YES no no no

Θ is very useful!

Ω not as much.

6

Review
Divide and Conquer [1/2]

A Divide/Decrease and Conquer
algorithm needs analysis.

▪ It splits its input into b
nearly equal-sized parts.

▪ It makes a recursive calls,
each taking one part.

▪ It does other work requiring
f(n) operations.

To Analyze
▪ Find b, a, d so that f(n) is

Θ(nd)—or O(nd).

▪ Compare a and bd.

▪ Apply the appropriate case of the

Master Theorem.

The Master Theorem

Suppose T(n) = a T(n/b) + f(n);
a ≥ 1, b > 1, f(n) is Θ(nd).

▪ “n/b” can be a nearby
integer.

Then:

▪ Case 1. If a < bd, then
T(n) is Θ(nd).

▪ Case 2. If a = bd, then
T(n) is Θ(nd log n).

▪ Case 3. If a > bd, then
T(n) is Θ(nk),
where k = logba.

We may also replace each “Θ”
above with “O”.

2024-10-07 CS 311 Fall 2024 7

Review
Divide and Conquer [2/2]

Try It!

Algorithm B is given a list as input. It uses a Decrease and
Conquer strategy. It splits its input in half (or nearly so), and
makes a recursive call on one of the parts. It also does other
work requiring linear time.

Use the Master Theorem to determine the order of Algorithm B.

2024-10-07 CS 311 Fall 2024

See In-Class Worksheet 2:

The Master Theorem.

8

2024-10-07 CS 311 Fall 2024

Review
Comparison Sorts II — Merge Sort

Merge Sort: recursively sort top & bottom halves of list, merge.

Analysis

▪ Efficiency: Θ(n log n). Avg same. ☺

▪ Requirements on Data: Works for
Linked Lists, etc. ☺

▪ Space Efficiency: Θ(log n) space for
recursion. Iterative version is in-place
for Linked List. Θ(n) space for array.
/☺/

▪ Stable: Yes. ☺

▪ Performance on Nearly Sorted Data: Not better or worse. 

Notes

▪ Practical & often used.

▪ Fastest known for (1) stable sort, (2) sorting a Linked List.

3 1 3 5 25 3

1 3 2 3 35 5

1 2 3 3 53 5

Sort
(recurse)

Sort
(recurse)

Stable Merge

See merge_sort.cpp.

9

2024-10-07 CS 311 Fall 2024

Review
The Limits of Sorting

The worst-case number of comparisons performed by a general-
purpose comparison sort must be Ω(n log n).

Reasoning:

▪ We are given a list of n items to be sorted.

▪ There are n! = n ⨉ (n–1) ⨉ … ⨉ 3 ⨉ 2 ⨉ 1 orderings of n items.

▪ Start with all n! orderings. Do comparisons, throwing out orderings
that do not match what we know, until just one ordering is left.

▪ With each comparison, we cannot guarantee that more than half of
the orderings will be thrown out.

▪ How many times must we cut n! in half, to get 1? Answer: log2(n!),
which is Θ(n log n). (Use Stirling’s Approximation.)

▪ So, for a general-purpose comparison sort, the worst-case number
of comparisons must be at least that big. Thus: Ω(n log n).

10

2024-10-07 CS 311 Fall 2024

Review
Comparison Sorts III — Quicksort [1/2]

Quicksort: choose pivot, partition, recursively sort sublists.

For the moment, we choose the first item in the list as our pivot.

1 3 5 25 33

Sort
(recurse)

Sort
(recurse)

1 3 52 5 3

2 3 31 5 53

Partition
Pivot

Pivot

3

See quicksort1.cpp.

11

2024-10-07 CS 311 Fall 2024

Review
Comparison Sorts III — Quicksort [2/2]

Hoare’s Partition Algorithm

▪ First, get the pivot out of the way: swap
it with the first list item.

▪ Set iterator left to point to the first item
past the pivot. Set iterator right to point
to the last list item.

▪ Move iterator left up, leaving only low
items below it. Move iterator right down,
leaving only high items above it.

▪ If both iterators get stuck—left points to
a high item and right points to a low
item—then swap the items and continue.

▪ Eventually left & right cross each other.

▪ Finish by swapping the pivot with the
last low item.

P

P

P lo hi

left right

left right

leftright

Plo hi

P lo hi

Pivot

12

Comparison Sorts III

2024-10-07 CS 311 Fall 2024

continued

13

2024-10-07 CS 311 Fall 2024

Comparison Sorts III
Better Quicksort — Problem

Quicksort has a serious problem.

▪ Try applying the Master Theorem. It does not work, because
Quicksort may not split its input into nearly equal-sized parts.

▪ The pivot might be chosen very poorly. In such cases, Quicksort has
linear recursion depth and does linear-time work at each step.

▪ Result: Quicksort is Θ(n2). 

▪ And the worst case happens when the list is already sorted!

However, Quicksort’s average-case time is very fast.

Quicksort is usually very fast, so people want to use it.

In the decades following Quicksort’s introduction in 1961, many
people published suggested improvements. We will look at three
of the most successful.

14

2024-10-07 CS 311 Fall 2024

Comparison Sorts III
Better Quicksort — Optimization 1: Improved Pivot Selection [1/2]

Choose the pivot using Median-of-3.

▪ Look at 3 items in the list: first, middle, last.

▪ Let the pivot be the one that is between the other two (by <).

This gives good performance on most nearly sorted data—as do
other similar pivot-selection schemes.

But Quicksort with Median-of-3 (or similar) is slow for other data.
So: still Θ(n2).

12 9 10 3 1 6 12 9 3 12

121 3 10 6 92

2 10 6

101 3 122 96

Quicksort with Median-of-3

Pivot Selection

Pivot Pivot

After Partition:

Initial State:

Recursively Sort Recursively Sort

Unoptimized Quicksort

You may wish to look into “Median-of-3 killer sequences”.

15

2024-10-07 CS 311 Fall 2024

Comparison Sorts III
Better Quicksort — Optimization 1: Improved Pivot Selection [2/2]

Ideally, our pivot is the median of the list.

▪ If it were, then Partition
would create lists of (nearly) equal size,
and we could apply the Master Theorem, which would tell us:

▪ If we do O(n) extra work at each step, then we get an
O(n log n) algorithm (same computation as for Merge Sort).

Can we find the median of a list in linear time?

▪ Yes! Use BFPRT (the Blum-Floyd-Pratt-Rivest-Tarjan Algorithm).

▪ However, this is not a very fast linear time.
The resulting sorting algorithm is log-linear
time, but much slower than Merge Sort.

<sigh>
Okay, stick with

Median-of-3.

Median: value that
goes in the middle,
when the list is sorted.

Catchy name, eh?
It is also called

Median of Medians.

16

2024-10-07 CS 311 Fall 2024

Comparison Sorts III
Better Quicksort — Optimization 2: Tail-Recursion Elimination

How much additional space does Quicksort use?

▪ Partition is in-place and Quicksort uses few local variables.

▪ However, Quicksort is recursive.

▪ Quicksort’s additional space usage is thus proportional to its
recursion depth …

▪ … which is linear. Worst-case additional space used: Θ(n). 

We can significantly improve this:

▪ Do the larger of the two recursive calls last.

▪ Do tail-recursion elimination on this final recursive call.

▪ Result: Recursion depth & additional space usage: Θ(log n). 

▪ And this additional space need not hold data items. (Why is this
kinda good?)

17

2024-10-07 CS 311 Fall 2024

Comparison Sorts III
Better Quicksort — Optimization 3: Finishing with Insertion Sort

A possible speed-up: finish with Insertion Sort

▪ Quicksort, but without quite going to the bottom of the recursion.
We end up with a nearly sorted list.

▪ Finish sorting this list using one call to
Insertion Sort.

▪ Apparently this is generally faster*, but it is still Θ(n2).

*I have read that this tends to adversely affect the number of cache hits.

12 9 3 12 10 6

123 1 102 96

92 3 121 106

Initial State:

Nearly Sorted:

Sorted:

Modified
Quicksort

Stop the recursion
when the sublist to be
sorted is small.

Insertion Sort

This is not the same as using
Insertion Sort for small lists.

18

2024-10-07 CS 311 Fall 2024

Comparison Sorts III
Better Quicksort — CODE

TO DO

▪ Rewrite our Quicksort to include the optimizations discussed:

▪ Median-of-3 pivot selection.

▪ Tail-recursion elimination on the larger recursive call.

▪ Recursive calls to sort small lists do nothing. End with Insertion Sort of

entire list.

Done. See quicksort2.cpp.

19

Comparison Sorts III
Better Quicksort — What is Needed?

We want an algorithm that:

▪ Is as fast as Quicksort on average.

▪ Has good [Θ(n log n)] worst-case performance.

But for over three decades no one found one.

Some said (and some still say), “Quicksort’s bad behavior is very
rare; we can ignore it.”

I suggest that this is not a good way to think.

▪ Sometimes poor worst-case behavior is okay;
sometimes it is not.

▪ Know what is important in your situation.

▪ Remember that malicious users exist, particularly on the Web.

In 1997, a solution to Quicksort’s big problem was finally
published. We will discuss this. But first, we analyze Quicksort.

2024-10-07 CS 311 Fall 2024

These are general
principles. They apply
to many issues, not
just those involving

Quicksort.

20

2024-10-07 CS 311 Fall 2024

Comparison Sorts III
Better Quicksort — Analysis of Quicksort

Efficiency 

▪ Quicksort is Θ(n2).

▪ Quicksort has a very good Θ(n log n) average-case time. ☺☺

Requirements on Data 

▪ Non-trivial pivot-selection algorithms (Median-of-3 and similar) are
only efficient for random-access data.

Space Usage 

▪ Quicksort uses space for recursion.

▪ Additional space: Θ(log n), if clever tail-recursion elimination is done.

▪ Even if all recursion is eliminated, O(log n) additional space is still used.

▪ This additional space need not hold any data items.

Stability 

▪ Efficient versions of Quicksort are not stable.

Performance on Nearly Sorted Data 

▪ An unoptimized Quicksort is slow on nearly sorted data: Θ(n2).

▪ Quicksort + Median-of-3 is Θ(n log n) on most nearly sorted data.

This is Quicksort’s advantage—
its only advantage.

21

2024-10-07 CS 311 Fall 2024

Comparison Sorts III
Introsort — Introspection

In 1997, algorithms researcher David Musser introduced a simple
algorithm-design idea.

▪ For some problems, there are known algorithms with very good
average-case performance and very poor worst-case performance.

▪ Quicksort is the best known of these, but there are others.

▪ Musser’s idea is that, when such an algorithm runs, it should keep
track of its performance. If it is not doing well, then it can switch to
a different algorithm that has a better worst-case.

▪ Musser called this technique introspection, since the algorithm is
examining itself.

The most important application of introspection is to sorting. It
allows us to eliminate the awful worst-case behavior of
Quicksort.

22

Comparison Sorts III
Introsort — Heap Sort Preview

Here is a preview of a sort we will cover later in the semester.

We will study a data structure called a Binary Heap, which allows
for fast find and removal of the item with the greatest key.

This leads to a comparison sort called Heap Sort. Procedure:

▪ Create a Binary Heap containing the dataset to be sorted.

▪ Repeatedly remove the item with the greatest key. Store these
items in a list in reverse order: greatest at the end, etc.

▪ When complete, the list is a sorted version of the original dataset.

We study Heap Sort in detail later in the semester. For now:

▪ Heap Sort is log-linear time.

▪ Heap Sort is in-place.

▪ Heap Sort requires random-access data.

2024-10-07 CS 311 Fall 2024

And Heap Sort
forms part of a fast
Quicksort variant
called Introsort.

23

Comparison Sorts III
Introsort — Description

Quicksort’s problem is due to its recursion depth. Quicksort is slow
only when the recursion gets too deep.

Apply introspection:

▪ Do optimized Quicksort, but keep track of the recursion depth.

▪ If the depth exceeds some threshold—Musser suggested 2 log2n—
then switch to Heap Sort for the current sublist being sorted.

The resulting algorithm is called Introsort [introspective sort].

Musser’s 1997 paper recommends the optimizations we covered:

▪ Median-of-3 pivot selection.

▪ Tail-recursion elimination on one recursive call.

▪ Stop the recursion prematurely, and finish with Insertion Sort.
(Maybe. This can adversely affect cache performance.)

2024-10-07 CS 311 Fall 2024 24

2024-10-07 CS 311 Fall 2024

Comparison Sorts III
Introsort — Diagram

Here is an illustration of how Introsort works.

▪ In practice, the recursion will be much deeper than this.

▪ We might not do the Insertion Sort, due to its effect on cache hits.

Introsort-recurse

Like Mo3 Quicksort:

Find Mo3 Pivot, Partition

Introsort-recurse

Like Mo3 Quicksort:

Find Mo3 Pivot, Partition

Introsort-recurse

Like Mo3 Quicksort:

Find Mo3 Pivot, Partition

Introsort-recurse

Like Mo3 Quicksort:

Find Mo3 Pivot, Partition

Introsort-recurse

Like Mo3 Quicksort:

Find Mo3 Pivot, Partition

Insertion Sort

Introsort

When the sublist to sort is
very small, do not recurse.
Insertion Sort will finish
the job later [??].

When the recursion depth is
too great, switch to Heap Sort
to sort the current sublist.

Introsort-recurse

Like Mo3 Quicksort:

Find Mo3 Pivot, Partition

Introsort-recurse

Like Mo3 Quicksort:

Find Mo3 Pivot, Partition

Recursion Depth Limit

Here, the list is nearly
sorted. Finish with a
(linear time!) Insertion
Sort [??].

Heap Sort Heap Sort

Tail-recursion
elimination on
one recursive call.
But it still counts
toward the
“recursion depth”.

25

2024-10-07 CS 311 Fall 2024

Comparison Sorts III
Introsort — Analysis

Efficiency ☺☺

▪ Introsort is Θ(n log n).

▪ Introsort also has an average-case time of Θ(n log n)—of course.

▪ Its average-case time is just as good as Quicksort. ☺☺

Requirements on Data 

▪ Introsort requires random-access data.

Space Usage 

▪ Introsort uses space for recursion.

▪ Additional space: Θ(log n)—even if all recursion is eliminated.

▪ This additional space need not hold any data items.

Stability 

▪ Introsort is not stable.

Performance on Nearly Sorted Data 

▪ Introsort is not significantly faster or slower on nearly sorted data.

26

Comparison Sorts III
Introsort — Notes

Our discussion of Quicksort & Introsort might suggest that their
average-case time is significantly better than Merge Sort.

Historically, this has been largely the case. However, on modern
architectures, a well optimized Merge Sort can be faster.

This is a tricky issue. Relative speed depends on:

▪ The processor used, and the performance of its cache.

▪ The type of the data being sorted.

▪ The data structure used, and its size.

It appears to me [GGC] that, in practice, use of the Quicksort
family of algorithms—including Introsort—is fading.

For example, the old C Standard Library function qsort
traditionally did Quicksort (thus the name). But at least one
major implementation now uses Merge Sort in this function.

2024-10-07 CS 311 Fall 2024 27

	Slide 1: Comparison Sorts III
	Slide 2: Unit Overview Algorithmic Efficiency & Sorting
	Slide 3
	Slide 4: Review Analysis of Algorithms
	Slide 5: Review Introduction to Sorting — Overview of Algorithms
	Slide 6: Review Asymptotic Notation
	Slide 7: Review Divide and Conquer [1/2]
	Slide 8: Review Divide and Conquer [2/2]
	Slide 9: Review Comparison Sorts II — Merge Sort
	Slide 10: Review The Limits of Sorting
	Slide 11: Review Comparison Sorts III — Quicksort [1/2]
	Slide 12: Review Comparison Sorts III — Quicksort [2/2]
	Slide 13
	Slide 14: Comparison Sorts III Better Quicksort — Problem
	Slide 15: Comparison Sorts III Better Quicksort — Optimization 1: Improved Pivot Selection [1/2]
	Slide 16: Comparison Sorts III Better Quicksort — Optimization 1: Improved Pivot Selection [2/2]
	Slide 17: Comparison Sorts III Better Quicksort — Optimization 2: Tail-Recursion Elimination
	Slide 18: Comparison Sorts III Better Quicksort — Optimization 3: Finishing with Insertion Sort
	Slide 19: Comparison Sorts III Better Quicksort — CODE
	Slide 20: Comparison Sorts III Better Quicksort — What is Needed?
	Slide 21: Comparison Sorts III Better Quicksort — Analysis of Quicksort
	Slide 22: Comparison Sorts III Introsort — Introspection
	Slide 23: Comparison Sorts III Introsort — Heap Sort Preview
	Slide 24: Comparison Sorts III Introsort — Description
	Slide 25: Comparison Sorts III Introsort — Diagram
	Slide 26: Comparison Sorts III Introsort — Analysis
	Slide 27: Comparison Sorts III Introsort — Notes

