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Unit Overview
Algorithmic Efficiency & Sorting

Topics

▪ Analysis of Algorithms

▪ Introduction to Sorting

▪ Comparison Sorts I

▪ Asymptotic Notation

▪ Divide and Conquer

▪ Comparison Sorts II

▪ The Limits of Sorting

▪ Comparison Sorts III

▪ Non-Comparison Sorts

▪ Sorting in the C++ STL
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Review
Analysis of Algorithms

Useful Rules

▪ Rule of Thumb. For nested “real” loops, order is O(nt), where t is 
the number of nested loops.

▪ Addition Rule. O(f(n)) + O(g(n)) is either O(f(n)) or O(g(n)), 
whichever is larger. And similarly for Θ. This works when adding up 
any fixed, finite number of terms.

Using Big-O In Words

O(1) Constant time

O(log n) Logarithmic time

O(n) Linear time

O(n log n) Log-linear time

O(n2) Quadratic time

O(cn), for some c > 1 Exponential time

Cannot read 
all of input

Probably 
not scalable

Faster

Slower
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Review
Introduction to Sorting — Basics, Analyzing

Sort: Place a list in order.

Key: The part of the item we sort by.

Comparison sort: Sorting algorithm
that only gets information about item
by comparing them in pairs.

A general-purpose comparison sort
places no restrictions on the size of
the list or the values in it.

Analyzing a general-purpose comparison sort:

▪ (Time) Efficiency

▪ Requirements on Data

▪ Space Efficiency

▪ Stability

▪ Performance on Nearly Sorted Data

3 1 3 5 25

1 2 3 5 53

x

y
x<y ?compare

In-place = no large additional 
space required. 

Stable = never reverses the 
relative order of equivalent items. 

1. All items close to proper places,
    OR
2. few items out of order.
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Review
Introduction to Sorting — Overview of Algorithms

Sorting Algorithms Covered

▪ Quadratic-Time [O(n2)] Comparison Sorts

▪ Bubble Sort

▪ Insertion Sort

▪ Quicksort

▪ Log-Linear-Time [O(n log n)] Comparison Sorts

▪ Merge Sort

▪ Heap Sort (mostly later in semester)

▪ Introsort

▪ Special Purpose—Not Comparison Sorts

▪ Pigeonhole Sort

▪ Radix Sort






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Review
Comparison Sorts I — Insertion Sort

Insertion Sort repeatedly does this:

Analysis

▪ (Time) Efficiency: O(n2). Average case same. 

▪ Requirements on Data: Works for Linked Lists, etc. ☺

▪ Space Efficiency: In-place. ☺

▪ Stability: It is stable. ☺

▪ Performance on Nearly Sorted Data: O(n) for both kinds. ☺

Notes

▪ Too slow for most use cases.

▪ Fast in special cases: nearly sorted data and small lists.

▪ Thus, often used as part of other algorithms.

See insertion_sort.cpp.

x

sorted unsorted

insert
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Review
Asymptotic Notation

g(n) is:

▪  O(f(n)) if g(n) ≤ k×f(n) …

▪ Ω(f(n)) if g(n) ≥ k×f(n) …

▪ Θ(f(n)) if both are true—possibly with different values of k.

In an algorithmic context, g(n) might be:

▪ The maximum number of basic operations performed by the 
algorithm when given input of size n.

▪ The maximum amount of additional space required.

In-place means using O(1) additional space.

1 n n log n n2 5n2 n2 log n n3 n4

O(n2) YES YES YES YES YES no no no

Ω(n2) no no no YES YES YES YES YES

Θ(n2) no no no YES YES no no no

Θ is very useful!

Ω not as much.
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Review
Divide and Conquer [1/2]

A Divide/Decrease and Conquer 
algorithm needs analysis.

▪ It splits its input into b 
nearly equal-sized parts.

▪ It makes a recursive calls, 
each taking one part.

▪ It does other work requiring 
f(n) operations.

To Analyze
▪ Find b, a, d so that f(n) is 

Θ(nd)—or O(nd).

▪ Compare a and bd.

▪ Apply the appropriate case of the 

Master Theorem.

The Master Theorem

Suppose T(n) = a T(n/b) + f(n); 
a ≥ 1, b > 1, f(n) is Θ(nd).

▪ “n/b” can be a nearby 
integer.

Then:

▪ Case 1. If a < bd, then
T(n) is Θ(nd).

▪ Case 2. If a = bd, then
T(n) is Θ(nd log n).

▪ Case 3. If a > bd, then
T(n) is Θ(nk),
where k = logba.

We may also replace each “Θ” 
above with “O”.
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Review
Divide and Conquer [2/2]

Try It!

Algorithm A is given a list as input. It uses a Divide and Conquer 
strategy. It splits its input in half (or nearly so), and handles 
each part with a recursive call. It also does other work requiring 
constant time.

Use the Master Theorem to determine the order of Algorithm A.
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See In-Class Worksheet 1: 

The Master Theorem.
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Review
Comparison Sorts II — Merge Sort

Merge Sort: recursively sort top & bottom halves of list, merge.

Analysis

▪ Efficiency: Θ(n log n). Avg same. ☺

▪ Requirements on Data: Works for
Linked Lists, etc. ☺

▪ Space Efficiency: Θ(log n) space for
recursion. Iterative version is in-place
for Linked List. Θ(n) space for array.
/☺/

▪ Stable: Yes. ☺

▪ Performance on Nearly Sorted Data: Not better or worse. 

Notes

▪ Practical & often used.

▪ Fastest known for (1) stable sort, (2) sorting a Linked List.

3 1 3 5 25 3

1 3 2 3 35 5

1 2 3 3 53 5

Sort 
(recurse)

Sort 
(recurse)

Stable Merge

See merge_sort.cpp.
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The Limits of Sorting
Introduction

We have mentioned that most sorting algorithms fall into one of 
two categories:

▪ Slow: Θ(n2)—e.g., Bubble Sort, Insertion Sort.

▪ Fast: Θ(n log n)—e.g., Merge Sort.

Can we sort even faster than that?

No, we cannot—not with a general-purpose comparison sort.

Fact. A general-purpose comparison sort that lies in any time-
efficiency category faster than Θ(n log n) is impossible. 
(Remember: worst-case analysis.)

More precisely: we can prove that the worst-case number of 
comparisons performed by a general-purpose comparison sort 
must be Ω(n log n). Here is what Ω is good for: statements 

that say, “You cannot do better than this.”
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The Limits of Sorting
Proof — Background

Sorting determines the order of a list. Many orderings are possible.

A comparison finds the relative order of two items. Say x < y; now 
we know that any ordering with y before x is not the answer.

We cannot stop until only one possible ordering is left.

Example. Bubble Sort the list 2 3 1.

Possible

orderings:
123   132

213   231

312   321

3 < 2

No

?

Possible

orderings:
123   132

213   231

312   321

1 < 3

Yes

?

Possible

orderings:
123   132

213   231

312   321

1 < 2

Yes

?

Possible

orderings:
123   132

213   231

312   321

2

3

1

2

3

1

2

1

3

1

2

3

Data

Comparisons

Alternate 
View

Pass 2Pass 1
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The Limits of Sorting
Proof — Outline [1/2]

We prove that the worst-case number of comparisons performed 
by a general-purpose comparison sort must be Ω(n log n).

As on the previous slide:

▪ We are given a list of n items to be sorted.

▪ There are n! = n × (n–1) × … × 3 × 2 × 1 orderings of n items.

▪ Start with all n! orderings. Do comparisons, throwing out orderings 
that do not match what we know, until just one ordering is left.

How many comparisons are required?

▪ With each comparison, we cannot guarantee that more than half of 
the orderings will be thrown out. (Remember: worst case.)

▪ How many times must we cut n! in half, to get 1?

▪ Answer: log2(n!).

Continued on next slide …
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The Limits of Sorting
Proof — Outline [2/2]

We know that the worst-case number of comparisons performed by 
a general-purpose comparison sort cannot be less than log2(n!).

Now we use Stirling’s Approximation: 𝑛! ≈
𝑛𝑛

𝑒𝑛
2𝜋𝑛.

Take log2 of both sides:

log2 𝑛! ≈ 𝑛 log2 𝑛 − 𝑛 log2 𝑒 +
1

2
log2 2𝜋 +

1

2
log2 𝑛,

which is Θ(n log n).

So log2(n!) is Θ(n log n).

The worst case number of comparisons done by a general-purpose 
comparison sort must be at least that big. Thus: Ω(n log n).

See stirling.py.
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The Limits of Sorting
Another View

The worst-case number of comparisons performed by a general-
purpose comparison sort must be Ω(n log n).

Another way to say this involves a different model of computation:

▪ Legal operations:

▪ Any operation that does not depend on
the values of input data items.

▪ A comparison of two data items.

▪ Basic operation: Comparison of two data items.

▪ Size: Number of items in given list.

A restatement of what was proven:

In the above model of computation, every general-purpose 
comparison sort is Ω(n log n) time.

2024-10-04 CS 311 Fall 2024

In this model of 
computation, comparison 
sorting is the only kind of 
sorting that can be done.
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Comparison Sorts III
Quicksort — Introduction [1/3]

Idea

▪ Instead of simply splitting a list in half in the middle, try to be 
intelligent about it.

▪ Split the list into the low-valued items and the high-valued items; 
then recursively sort each bunch.

▪ Now no Merge is necessary.

But how do we 
decide what is low 
and what is high??
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Comparison Sorts III
Quicksort — Introduction [2/3]

Let’s be more precise about this algorithmic idea.

We use another Divide-and-Conquer technique:

▪ Pick an item in the list.

▪ This first item will do—for now.

▪ The chosen item is called the pivot.

▪ Rearrange the list so that the items
before the pivot are all less than or
equivalent to the pivot, and the items
after the pivot are all greater than or
equivalent to the pivot.

▪ This operation is called Partition.

It can be done in linear time.

▪ Recursively sort the sub-lists: items
before pivot, items after pivot.

This algorithm is called Quicksort [C.A.R. (“Tony”) Hoare, 1961]. 

1 3 5 25 33

Sort 
(recurse)

Sort 
(recurse)

1 3 52 5 3

2 3 31 5 53

Partition
Pivot

Pivot

3
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Comparison Sorts III
Quicksort — Introduction [3/3]

Compare Merge Sort & Quicksort.

▪ Both use Divide-and-Conquer.

▪ Both have an auxiliary operation (Stable Merge, Partition) that does 
all modification of the data set and that takes linear time.

▪ Merge Sort recurses first. Quicksort recurses last.

1 3 5 25 33

Sort 
(recurse)

Sort 
(recurse)

1 3 52 5 3

2 3 31 5 53

Partition
Pivot

Pivot

3

3 1 3 5 25 3

1 3 2 3 35 5

1 2 3 3 53 5

Sort 
(recurse)

Sort 
(recurse)

Stable Merge

Merge Sort Quicksort
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Comparison Sorts III
Quicksort — Partition [1/2]

How do we do the Partition operation?

There are multiple practical partition algorithms that are used with 
Quicksort. Generally, these are:

▪ In-place.

▪ Linear-time.

▪ Not stable.

We look at the details of a common method of doing the Partition: 
Hoare’s Partition Algorithm.
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Comparison Sorts III
Quicksort — Partition [2/2]

Hoare’s Partition Algorithm

▪ First, get the pivot out of the way: swap 
it with the first list item.

▪ Set iterator left to point to the first item 
past the pivot. Set iterator right to point 
to the last list item.

▪ Move iterator left up, leaving only low 
items below it. Move iterator right down, 
leaving only high items above it.

▪ If both iterators get stuck—left points to 
a high item and right points to a low 
item—then swap the items and continue.

▪ Eventually left & right cross each other.

▪ Finish by swapping the pivot with the 
last low item.

P

P

P lo hi

left right

left right

leftright

Plo hi

P lo hi

Pivot
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Comparison Sorts III
Quicksort — CODE

TO DO

▪ Write Quicksort, with the in-place Partition being a separate 
function.

▪ Use Hoare’s Partition Algorithm, written as a separate function.

▪ Require random-access iterators.

Done. See quicksort1.cpp.
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Comparison Sorts III
TO BE CONTINUED …

Comparison Sorts III will be continued next time.
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