
The Limits of Sorting
Comparison Sorts III

CS 311 Data Structures and Algorithms

Lecture Slides

Friday, October 4, 2024

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2005–2024 Glenn G. Chappell

Some material contributed by Chris Hartman

2024-10-04 CS 311 Fall 2024

Unit Overview
Algorithmic Efficiency & Sorting

Topics

▪ Analysis of Algorithms

▪ Introduction to Sorting

▪ Comparison Sorts I

▪ Asymptotic Notation

▪ Divide and Conquer

▪ Comparison Sorts II

▪ The Limits of Sorting

▪ Comparison Sorts III

▪ Non-Comparison Sorts

▪ Sorting in the C++ STL













2

Review

2024-10-04 CS 311 Fall 2024 3

2024-10-04 CS 311 Fall 2024

Review
Analysis of Algorithms

Useful Rules

▪ Rule of Thumb. For nested “real” loops, order is O(nt), where t is
the number of nested loops.

▪ Addition Rule. O(f(n)) + O(g(n)) is either O(f(n)) or O(g(n)),
whichever is larger. And similarly for Θ. This works when adding up
any fixed, finite number of terms.

Using Big-O In Words

O(1) Constant time

O(log n) Logarithmic time

O(n) Linear time

O(n log n) Log-linear time

O(n2) Quadratic time

O(cn), for some c > 1 Exponential time

Cannot read
all of input

Probably
not scalable

Faster

Slower

4

2024-10-04 CS 311 Fall 2024

Review
Introduction to Sorting — Basics, Analyzing

Sort: Place a list in order.

Key: The part of the item we sort by.

Comparison sort: Sorting algorithm
that only gets information about item
by comparing them in pairs.

A general-purpose comparison sort
places no restrictions on the size of
the list or the values in it.

Analyzing a general-purpose comparison sort:

▪ (Time) Efficiency

▪ Requirements on Data

▪ Space Efficiency

▪ Stability

▪ Performance on Nearly Sorted Data

3 1 3 5 25

1 2 3 5 53

x

y
x<y ?compare

In-place = no large additional
space required.

Stable = never reverses the
relative order of equivalent items.

1. All items close to proper places,
 OR
2. few items out of order.

5

2024-10-04 CS 311 Fall 2024

Review
Introduction to Sorting — Overview of Algorithms

Sorting Algorithms Covered

▪ Quadratic-Time [O(n2)] Comparison Sorts

▪ Bubble Sort

▪ Insertion Sort

▪ Quicksort

▪ Log-Linear-Time [O(n log n)] Comparison Sorts

▪ Merge Sort

▪ Heap Sort (mostly later in semester)

▪ Introsort

▪ Special Purpose—Not Comparison Sorts

▪ Pigeonhole Sort

▪ Radix Sort







6

2024-10-04 CS 311 Fall 2024

Review
Comparison Sorts I — Insertion Sort

Insertion Sort repeatedly does this:

Analysis

▪ (Time) Efficiency: O(n2). Average case same. 

▪ Requirements on Data: Works for Linked Lists, etc. ☺

▪ Space Efficiency: In-place. ☺

▪ Stability: It is stable. ☺

▪ Performance on Nearly Sorted Data: O(n) for both kinds. ☺

Notes

▪ Too slow for most use cases.

▪ Fast in special cases: nearly sorted data and small lists.

▪ Thus, often used as part of other algorithms.

See insertion_sort.cpp.

x

sorted unsorted

insert

7

2024-10-04 CS 311 Fall 2024

Review
Asymptotic Notation

g(n) is:

▪ O(f(n)) if g(n) ≤ k×f(n) …

▪ Ω(f(n)) if g(n) ≥ k×f(n) …

▪ Θ(f(n)) if both are true—possibly with different values of k.

In an algorithmic context, g(n) might be:

▪ The maximum number of basic operations performed by the
algorithm when given input of size n.

▪ The maximum amount of additional space required.

In-place means using O(1) additional space.

1 n n log n n2 5n2 n2 log n n3 n4

O(n2) YES YES YES YES YES no no no

Ω(n2) no no no YES YES YES YES YES

Θ(n2) no no no YES YES no no no

Θ is very useful!

Ω not as much.

8

Review
Divide and Conquer [1/2]

A Divide/Decrease and Conquer
algorithm needs analysis.

▪ It splits its input into b
nearly equal-sized parts.

▪ It makes a recursive calls,
each taking one part.

▪ It does other work requiring
f(n) operations.

To Analyze
▪ Find b, a, d so that f(n) is

Θ(nd)—or O(nd).

▪ Compare a and bd.

▪ Apply the appropriate case of the

Master Theorem.

The Master Theorem

Suppose T(n) = a T(n/b) + f(n);
a ≥ 1, b > 1, f(n) is Θ(nd).

▪ “n/b” can be a nearby
integer.

Then:

▪ Case 1. If a < bd, then
T(n) is Θ(nd).

▪ Case 2. If a = bd, then
T(n) is Θ(nd log n).

▪ Case 3. If a > bd, then
T(n) is Θ(nk),
where k = logba.

We may also replace each “Θ”
above with “O”.

2024-10-04 CS 311 Fall 2024 9

Review
Divide and Conquer [2/2]

Try It!

Algorithm A is given a list as input. It uses a Divide and Conquer
strategy. It splits its input in half (or nearly so), and handles
each part with a recursive call. It also does other work requiring
constant time.

Use the Master Theorem to determine the order of Algorithm A.

2024-10-04 CS 311 Fall 2024

See In-Class Worksheet 1:

The Master Theorem.

10

2024-10-04 CS 311 Fall 2024

Review
Comparison Sorts II — Merge Sort

Merge Sort: recursively sort top & bottom halves of list, merge.

Analysis

▪ Efficiency: Θ(n log n). Avg same. ☺

▪ Requirements on Data: Works for
Linked Lists, etc. ☺

▪ Space Efficiency: Θ(log n) space for
recursion. Iterative version is in-place
for Linked List. Θ(n) space for array.
/☺/

▪ Stable: Yes. ☺

▪ Performance on Nearly Sorted Data: Not better or worse. 

Notes

▪ Practical & often used.

▪ Fastest known for (1) stable sort, (2) sorting a Linked List.

3 1 3 5 25 3

1 3 2 3 35 5

1 2 3 3 53 5

Sort
(recurse)

Sort
(recurse)

Stable Merge

See merge_sort.cpp.

11

The Limits of Sorting

2024-10-04 CS 311 Fall 2024 12

2024-10-04 CS 311 Fall 2024

The Limits of Sorting
Introduction

We have mentioned that most sorting algorithms fall into one of
two categories:

▪ Slow: Θ(n2)—e.g., Bubble Sort, Insertion Sort.

▪ Fast: Θ(n log n)—e.g., Merge Sort.

Can we sort even faster than that?

No, we cannot—not with a general-purpose comparison sort.

Fact. A general-purpose comparison sort that lies in any time-
efficiency category faster than Θ(n log n) is impossible.
(Remember: worst-case analysis.)

More precisely: we can prove that the worst-case number of
comparisons performed by a general-purpose comparison sort
must be Ω(n log n). Here is what Ω is good for: statements

that say, “You cannot do better than this.”

13

2024-10-04 CS 311 Fall 2024

The Limits of Sorting
Proof — Background

Sorting determines the order of a list. Many orderings are possible.

A comparison finds the relative order of two items. Say x < y; now
we know that any ordering with y before x is not the answer.

We cannot stop until only one possible ordering is left.

Example. Bubble Sort the list 2 3 1.

Possible

orderings:
123 132

213 231

312 321

3 < 2

No

?

Possible

orderings:
123 132

213 231

312 321

1 < 3

Yes

?

Possible

orderings:
123 132

213 231

312 321

1 < 2

Yes

?

Possible

orderings:
123 132

213 231

312 321

2

3

1

2

3

1

2

1

3

1

2

3

Data

Comparisons

Alternate
View

Pass 2Pass 1

14

2024-10-04 CS 311 Fall 2024

The Limits of Sorting
Proof — Outline [1/2]

We prove that the worst-case number of comparisons performed
by a general-purpose comparison sort must be Ω(n log n).

As on the previous slide:

▪ We are given a list of n items to be sorted.

▪ There are n! = n × (n–1) × … × 3 × 2 × 1 orderings of n items.

▪ Start with all n! orderings. Do comparisons, throwing out orderings
that do not match what we know, until just one ordering is left.

How many comparisons are required?

▪ With each comparison, we cannot guarantee that more than half of
the orderings will be thrown out. (Remember: worst case.)

▪ How many times must we cut n! in half, to get 1?

▪ Answer: log2(n!).

Continued on next slide …

15

2024-10-04 CS 311 Fall 2024

The Limits of Sorting
Proof — Outline [2/2]

We know that the worst-case number of comparisons performed by
a general-purpose comparison sort cannot be less than log2(n!).

Now we use Stirling’s Approximation: 𝑛! ≈
𝑛𝑛

𝑒𝑛
2𝜋𝑛.

Take log2 of both sides:

log2 𝑛! ≈ 𝑛 log2 𝑛 − 𝑛 log2 𝑒 +
1

2
log2 2𝜋 +

1

2
log2 𝑛,

which is Θ(n log n).

So log2(n!) is Θ(n log n).

The worst case number of comparisons done by a general-purpose
comparison sort must be at least that big. Thus: Ω(n log n).

See stirling.py.

16

The Limits of Sorting
Another View

The worst-case number of comparisons performed by a general-
purpose comparison sort must be Ω(n log n).

Another way to say this involves a different model of computation:

▪ Legal operations:

▪ Any operation that does not depend on
the values of input data items.

▪ A comparison of two data items.

▪ Basic operation: Comparison of two data items.

▪ Size: Number of items in given list.

A restatement of what was proven:

In the above model of computation, every general-purpose
comparison sort is Ω(n log n) time.

2024-10-04 CS 311 Fall 2024

In this model of
computation, comparison
sorting is the only kind of
sorting that can be done.

17

Comparison Sorts III

2024-10-04 CS 311 Fall 2024 18

2024-10-04 CS 311 Fall 2024

Comparison Sorts III
Quicksort — Introduction [1/3]

Idea

▪ Instead of simply splitting a list in half in the middle, try to be
intelligent about it.

▪ Split the list into the low-valued items and the high-valued items;
then recursively sort each bunch.

▪ Now no Merge is necessary.

But how do we
decide what is low
and what is high??

19

2024-10-04 CS 311 Fall 2024

Comparison Sorts III
Quicksort — Introduction [2/3]

Let’s be more precise about this algorithmic idea.

We use another Divide-and-Conquer technique:

▪ Pick an item in the list.

▪ This first item will do—for now.

▪ The chosen item is called the pivot.

▪ Rearrange the list so that the items
before the pivot are all less than or
equivalent to the pivot, and the items
after the pivot are all greater than or
equivalent to the pivot.

▪ This operation is called Partition.

It can be done in linear time.

▪ Recursively sort the sub-lists: items
before pivot, items after pivot.

This algorithm is called Quicksort [C.A.R. (“Tony”) Hoare, 1961].

1 3 5 25 33

Sort
(recurse)

Sort
(recurse)

1 3 52 5 3

2 3 31 5 53

Partition
Pivot

Pivot

3

20

2024-10-04 CS 311 Fall 2024

Comparison Sorts III
Quicksort — Introduction [3/3]

Compare Merge Sort & Quicksort.

▪ Both use Divide-and-Conquer.

▪ Both have an auxiliary operation (Stable Merge, Partition) that does
all modification of the data set and that takes linear time.

▪ Merge Sort recurses first. Quicksort recurses last.

1 3 5 25 33

Sort
(recurse)

Sort
(recurse)

1 3 52 5 3

2 3 31 5 53

Partition
Pivot

Pivot

3

3 1 3 5 25 3

1 3 2 3 35 5

1 2 3 3 53 5

Sort
(recurse)

Sort
(recurse)

Stable Merge

Merge Sort Quicksort

21

2024-10-04 CS 311 Fall 2024

Comparison Sorts III
Quicksort — Partition [1/2]

How do we do the Partition operation?

There are multiple practical partition algorithms that are used with
Quicksort. Generally, these are:

▪ In-place.

▪ Linear-time.

▪ Not stable.

We look at the details of a common method of doing the Partition:
Hoare’s Partition Algorithm.

22

2024-10-04 CS 311 Fall 2024

Comparison Sorts III
Quicksort — Partition [2/2]

Hoare’s Partition Algorithm

▪ First, get the pivot out of the way: swap
it with the first list item.

▪ Set iterator left to point to the first item
past the pivot. Set iterator right to point
to the last list item.

▪ Move iterator left up, leaving only low
items below it. Move iterator right down,
leaving only high items above it.

▪ If both iterators get stuck—left points to
a high item and right points to a low
item—then swap the items and continue.

▪ Eventually left & right cross each other.

▪ Finish by swapping the pivot with the
last low item.

P

P

P lo hi

left right

left right

leftright

Plo hi

P lo hi

Pivot

23

2024-10-04 CS 311 Fall 2024

Comparison Sorts III
Quicksort — CODE

TO DO

▪ Write Quicksort, with the in-place Partition being a separate
function.

▪ Use Hoare’s Partition Algorithm, written as a separate function.

▪ Require random-access iterators.

Done. See quicksort1.cpp.

24

Comparison Sorts III
TO BE CONTINUED …

Comparison Sorts III will be continued next time.

2024-10-04 CS 311 Fall 2024 25

	Slide 1: The Limits of Sorting Comparison Sorts III
	Slide 2: Unit Overview Algorithmic Efficiency & Sorting
	Slide 3
	Slide 4: Review Analysis of Algorithms
	Slide 5: Review Introduction to Sorting — Basics, Analyzing
	Slide 6: Review Introduction to Sorting — Overview of Algorithms
	Slide 7: Review Comparison Sorts I — Insertion Sort
	Slide 8: Review Asymptotic Notation
	Slide 9: Review Divide and Conquer [1/2]
	Slide 10: Review Divide and Conquer [2/2]
	Slide 11: Review Comparison Sorts II — Merge Sort
	Slide 12
	Slide 13: The Limits of Sorting Introduction
	Slide 14: The Limits of Sorting Proof — Background
	Slide 15: The Limits of Sorting Proof — Outline [1/2]
	Slide 16: The Limits of Sorting Proof — Outline [2/2]
	Slide 17: The Limits of Sorting Another View
	Slide 18
	Slide 19: Comparison Sorts III Quicksort — Introduction [1/3]
	Slide 20: Comparison Sorts III Quicksort — Introduction [2/3]
	Slide 21: Comparison Sorts III Quicksort — Introduction [3/3]
	Slide 22: Comparison Sorts III Quicksort — Partition [1/2]
	Slide 23: Comparison Sorts III Quicksort — Partition [2/2]
	Slide 24: Comparison Sorts III Quicksort — CODE
	Slide 25: Comparison Sorts III TO BE CONTINUED …

