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Unit Overview
Algorithmic Efficiency & Sorting

Topics

▪ Analysis of Algorithms

▪ Introduction to Sorting

▪ Comparison Sorts I

▪ Asymptotic Notation

▪ Divide and Conquer

▪ Comparison Sorts II

▪ The Limits of Sorting

▪ Comparison Sorts III

▪ Non-Comparison Sorts

▪ Sorting in the C++ STL






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Review
Analysis of Algorithms [1/2]

Efficiency

▪ General meaning. Using few resources: time, space, etc.

▪ Specific meaning. Fast (not using much time).

▪ For other kinds of efficiency, we qualify: space efficiency, etc.

▪ Unless we say otherwise, we are talking about the worst case: 
maximum resource usage—usually for a given input size.

Our model of computation includes:

▪ Legal operations: what we are allowed to do.

▪ Basic operations: the operations we count.

▪ How we measure the size of the input.

Scalable: works well with large problems. (Or, it scales well.)
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Review
Analysis of Algorithms [2/2]

Rule of Thumb

For nested “real” loops (we do not count, for example, a loop executed 
only a fixed number of times) with basic operations inside the 
innermost loop, order is O(nt), where t is the number of nested loops.

Using Big-O In Words

O(1) Constant time

O(log n) Logarithmic time

O(n) Linear time

O(n log n) Log-linear time

O(n2) Quadratic time

O(cn), for some c > 1 Exponential time

Cannot read 
all of input

Probably 
not scalable

Faster

Slower
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Review
Introduction to Sorting — Basics, Analyzing

Sort: Place a list in order.

Key: The part of the item we sort by.

Comparison sort: Sorting algorithm
that only gets information about item
by comparing them in pairs.

A general-purpose comparison sort
places no restrictions on the size of
the list or the values in it.

Analyzing a general-purpose comparison sort:

▪ (Time) Efficiency

▪ Requirements on Data

▪ Space Efficiency

▪ Stability

▪ Performance on Nearly Sorted Data

3 1 3 5 25

1 2 3 5 53

x

y
x<y ?compare

In-place = no large additional 
space required. 

Stable = never reverses the 
relative order of equivalent items. 

1. All items close to proper places,
    OR
2. few items out of order.
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Review
Introduction to Sorting — Overview of Algorithms

Sorting Algorithms Covered

▪ Quadratic-Time [O(n2)] Comparison Sorts

▪ Bubble Sort

▪ Insertion Sort

▪ Quicksort

▪ Log-Linear-Time [O(n log n)] Comparison Sorts

▪ Merge Sort

▪ Heap Sort (mostly later in semester)

▪ Introsort

▪ Special Purpose—Not Comparison Sorts

▪ Pigeonhole Sort

▪ Radix Sort




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Review
Comparison Sorts I — Bubble Sort

Bubble Sort proceeds in a number of passes, each
of which “bubbles” a large item to the top by
doing compare/swap on pairs of consecutive items.

Analysis

▪ (Time) Efficiency: O(n2). Average case same. 

▪ Requirements on Data: Works for Linked Lists, etc. ☺

▪ Space Efficiency: In-place. ☺

▪ Stability: It is stable. ☺

▪ Performance on Nearly Sorted Data: ☺/

▪ O(n) for type 1 (all close). ☺

▪ O(n2) for type 2 (few wrong). 

Note

▪ Too slow. Do not use in practice.

See bubble_sort.cpp.

6

2

5

4

1

7

3

Swap?
Yes.

This pair
is next
(as 6 & 5).
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Review
Comparison Sorts I — Insertion Sort [1/2]

Insertion Sort repeatedly does this:

Analysis

▪ (Time) Efficiency: O(n2). Average case same. 

▪ Requirements on Data: Works for Linked Lists, etc. ☺

▪ Space Efficiency: In-place. ☺

▪ Stability: It is stable. ☺

▪ Performance on Nearly Sorted Data: O(n) for both kinds. ☺

Notes

▪ Too slow for most use cases.

▪ Fast in special cases: nearly sorted data and small lists.

▪ Thus, often used as part of other algorithms.

See insertion_sort.cpp.

x

sorted unsorted

insert
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Review
Comparison Sorts I — Insertion Sort [2/2]

std::move (<utility>) takes one argument, which it casts to an 
Rvalue. Use it to force move construction/assignment.

a = b;        // Does a copy

a = move(b);  // Does a move

The second line of code above is often faster. However, when we 
do it, we are making an implicit promise: we will not use the 
current value of b again.

cout << b;    // BAD!

b = c;

cout << b;    // Okay

2024-10-02 CS 311 Fall 2024

There is another std::move, in 
<algorithm>, taking 3 arguments.

It is the move version of std::copy.

std::move does not move anything!
It casts to an Rvalue, which makes 
a non-const argument movable.
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Asymptotic Notation
Big-O More Generally — Introduction

Recall our definition of big-O:

Algorithm A is order f(n) [written O(f(n))] if
there exist constants k and n0 such that
algorithm A performs no more than k×f(n) basic operations 
when given input of size n ≥ n0.

The fundamental idea here actually has little to do with algorithms.

Rather, this is a method for talking about how quickly a function 
grows—a mathematical function, that is.

We have applied this idea to the (mathematical) function that tells 
the maximum number of steps an algorithm takes for input of a 
given size.

But we could apply it to other things, too.
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Asymptotic Notation
Big-O More Generally — Definition

Suppose we have nonnegative real-valued functions f and g on the 
nonnegative integers. That is, for each nonnegative integer n, 
f(n) and g(n) are nonnegative real numbers. 

We say g(n) is O(f(n)) if
there exist constants k and n0 such that
g(n) ≤ k×f(n), whenever n ≥ n0.

Our earlier definition of big-O is a special case: let g(n) be the 
maximum number of basic operations required to execute 
algorithm A for input of size n.

1 n n log n n2 5n2 n2 log n n3 n4

O(n2) YES YES YES YES YES no no no

Big-O is an example of 
asymptotic notation:
it is about what happens 
when a number (often n) 

gets arbitrarily large.
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Asymptotic Notation
Big-O More Generally — Applications 

We can now use big-O for other concepts—for example, space 
efficiency.

We have defined in-place to be the same as O(1) additional space 
(additional = beyond the space required by its input).

So in-place means constant additional space.

Bubble Sort and Insertion Sort use O(1), that is, constant, 
additional space.

So does Binary Search, if the recursion is eliminated. Otherwise, it 
uses logarithmic additional space for the recursion.

Our next sorting algorithm can use more than this.
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Asymptotic Notation
Omega

Another kind of asymptotic notation: Ω (Omega).

We say g(n) is Ω(f(n)) if
there exist constants k and n0 such that
g(n) ≥ k×f(n), whenever n ≥ n0.

If we say an algorithm is Ω(f(n)), then we mean that, for input of 
size n, the algorithm’s worst-case number of basic operations is 
at least k×f(n), for some number k, when n is large enough.

Its best-case number of operations may be smaller.

The definition of big-O 
has “≤” here.

1 n n log n n2 5n2 n2 log n n3 n4

O(n2) YES YES YES YES YES no no no

Ω(n2) no no no YES YES YES YES YES

15



2024-10-02 CS 311 Fall 2024

Asymptotic Notation
Theta

One last kind of asymptotic notation: Θ (Theta).

We say g(n) is Θ(f(n)) if
g(n) is O(f(n)), and
g(n) is Ω(f(n)).

The values of k used above may be different.

For example, a function would be Θ(n2) if it always lies between 
(say) 3n2 and 7n2, whenever n is large enough.

1 n n log n n2 5n2 n2 log n n3 n4

O(n2) YES YES YES YES YES no no no

Ω(n2) no no no YES YES YES YES YES

Θ(n2) no no no YES YES no no no

16



2024-10-02 CS 311 Fall 2024

Asymptotic Notation
Summary

Three ways to say how fast a (mathematical) function grows. 

g(n) is:

▪  O(f(n)) if g(n) ≤ k×f(n) …

▪ Ω(f(n)) if g(n) ≥ k×f(n) …

▪ Θ(f(n)) if both are true—possibly with different values of k.

Useful: Let g(n) be the maximum number of basic operations 
performed by some algorithm when given input of size n.

Or: let g(n) be the maximum amount of additional space some 
algorithm uses when given input of size n.

1 n n log n n2 5n2 n2 log n n3 n4

O(n2) YES YES YES YES YES no no no

Ω(n2) no no no YES YES YES YES YES

Θ(n2) no no no YES YES no no no

Θ is very useful!

Ω not as much, 
but we will use it.
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Divide and Conquer
Algorithmic Strategies

An algorithmic strategy is a general method for putting together 
an algorithm.

Example: split the input into parts and handle each part with a 
recursive call. This idea, called Divide and Conquer, is used by 
a number of fast algorithms.

A similar idea is used by Binary Search, which splits its input into 
parts, but only makes a recursive call on one of the parts. We 
call this Decrease and Conquer.

Questions

▪ How do we analyze the efficiency of algorithms that use Divide and 
Conquer or Decrease and Conquer?

▪ Can we use Divide and Conquer to build an improved sorting 
algorithm? One faster than Θ(n2)? (We have not seen any, yet.)

See CS 411 for more 
about these and other 
algorithmic strategies.
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Divide and Conquer
The Master Theorem — Background

Say we are analyzing a recursive algorithm.

▪ Its worst-case number of operations, for input of size n, is T(n).

▪ We want to know how fast T(n) grows.

Suppose our algorithm uses Divide/Decrease and Conquer:

▪ The number of recursive calls it makes is a.

▪ The size of the dataset passed to each recursive call is n/b (or a 
nearby integer, if n/b is not an integer).

▪ Whatever other work the algorithm does requires f(n) operations.

This gives us a recurrence relation:

▪ T(n) = a T(n/b) + f(n).

▪ “n/b” can be a nearby integer.

Given such a recurrence, we can
often determine the order of T(n) using the Master Theorem.

If the algorithm splits its input 
into parts of size (about) n/b, 
then b is the number of parts, 

and those parts must be 
(nearly) equal-sized.

20



2024-10-02 CS 311 Fall 2024

Divide and Conquer
The Master Theorem — Statement

The Master Theorem

Suppose T(n) = a T(n/b) + f(n), where
a ≥ 1, b > 1, and f(n) is Θ(nd).

▪ “n/b” can be a nearby integer.

Compare a to bd.

▪ Case 1. If a < bd, then T(n) is Θ(nd).

▪ Case 2. If a = bd, then T(n) is Θ(nd log n).

▪ Case 3. If a > bd, then T(n) is Θ(nk), where k = logba.

We may also replace each “Θ” above with “O”. Recall: logba is the 
power we would need 
to raise b to, in order 
to get a. So bk = a.
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Divide and Conquer
The Master Theorem — Using It

A typical application of the Master Theorem proceed as follows.

We are analyzing an algorithm that takes input of size n. It splits 
its input into nearly equal-sized parts, and it makes recursive 
calls, each call handling one of the parts.

Find b, a, d.

▪ b is the number of nearly equal-sized parts.

▪ a is the number of recursive calls.

▪ f(n) is the amount of other work done in the body of the algorithm.

▪ Write f(n) as Θ(nd) or O(nd).

Compare a to bd, and apply the appropriate case: 1, 2, or 3.

Other work means anything the algorithm 
does other than making recursive calls.
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Divide and Conquer
The Master Theorem — Example: Efficiency of Searching

Sequential Search is Θ(n) (use the Rule of Thumb).

Analyze Binary Search using the Master Theorem:

▪ Find b, a, d.

▪ Binary Search splits its input into 2 nearly-equal-sized parts.

▪ b = 2.

▪ Binary Search makes 1 recursive call.

▪ a = 1.

▪ In addition, Binary Search does two comparisons and finds the middle of 
a random-access dataset: constant time.

▪ f(n) is Θ(1). 1 is n0. So d = 0.

▪ Which Case?

▪ Compare a (= 1) with bd (= 20 = 1). a = bd → Case 2.

▪ Conclusion

▪ By Case 2 of the Master Theorem, T(n) is Θ(nd log n).

▪ That is, T(n) is Θ(n0 log n).

▪ Simplify. Binary Search is Θ(log n): logarithmic time.

Assume a 
random-access 

dataset.
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Divide and Conquer
Logarithms

Divide/Decrease and Conquer are common ways to get algorithms 
that are Θ(log n) or Θ(n log n).

We said that the base of the logarithm does not matter. Why?

▪ Suppose (for example) that an algorithm takes 5 log2n steps.

▪ This algorithm is Θ(log2n).

▪ Is it also Θ(log10n)? Yes!

▪ 5 log2n = 5(log210×log10n) = (5 log210)×log10n.

Fact. If b and c are greater than 1, then Θ(logbn) and Θ(logcn) are 
the same thing—and similarly for O(logbn) and O(logcn).

So we generally leave off the base and simply say Θ(log n),
O(log n), Θ(n log n), etc.

This is just a number. 
It is about 16.6.
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Comparison Sorts II
Merge Sort — Introduction

We can use Divide and Conquer to build a better sort.

We are given a list to sort.

Split the list into two parts that are the
same size—or nearly so.

Sort each part with a recursive call.

Merge the parts into a single sorted list.
Do this without reversing the relative
order of equivalent items—that is, in
a stable manner: Stable Merge.

This algorithm is called is Merge Sort [John von Neumann, 1945].

3 1 3 5 25 3

1 3 2 3 35 5

1 2 3 3 53 5

Sort 
(recurse)

Sort 
(recurse)

Stable Merge
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Comparison Sorts II
Merge Sort — Merging in a Linked List

Consider how a Stable Merge would be done.

We can do an efficient Stable Merge of a Linked List in-place.

To merge two sorted ranges within a Linked List:

▪ Two pointers: A & B. A starts at the head, B at the end of range #1.

▪ Check whether the item after B’s node is less than the item after A’s 
node. If so, remove the item after B’s node and re-insert it after A.

▪ This uses only pointer operations. We do not move any data items.

▪ Advance A or B as appropriate and repeat.

1183 20 1241 15

Sorted range #1 Sorted range #2

1183 20

1241 15 Result of 
Stable Merge 
operation

A B
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Comparison Sorts II
Merge Sort — General-Purpose Merge

Efficient Stable Merge in an array generally uses a separate buffer.

▪ This Stable Merge algorithm does not require an array; it works 
with just about any kind of data.

As before, use two pointers. Check which item comes first, and 
copy that to the buffer. Advance pointers as appropriate.

At the end, we could copy the buffer back to the original array.

2024-10-02 CS 311 Fall 2024

3 8 20 1 411 12 15

Sorted
range #1

Sorted
range #2

A B

3 8 20 1 411 12 15

A B

1 3 84

Original Data Buffer

Next

Intermediate stage in 
Stable Merge operation
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Comparison Sorts II
Merge Sort — CODE

TO DO

▪ Implement Merge Sort.

▪ Make the Stable Merge a separate function. Use the general-purpose 
Stable Merge algorithm.

▪ Analyze.

▪ Coming up.

Note. Our code allocates the buffer every time a Stable Merge is 
done. It also merges to the buffer and then copies the data back 
every time. There are ways to handle the Stable Merge more 
efficiently. However, this simple version of Merge Sort should 
give us a decent idea of how it works and how fast it is.

2024-10-02 CS 311 Fall 2024

Done. See merge_sort.cpp.
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Comparison Sorts II
Merge Sort — Analysis [1/3]

We wish to analyze Merge Sort using the Master Theorem.

How much “other work” [f(n)] does it do?

In addition to the recursive calls, Merge Sort does:

▪ Base-case check: Θ(1).

▪ Find the middle: Θ(1) for array, Θ(n) for Linked List.

▪ Stable Merge: Θ(n) for both versions.

Addition Rule. O(f(n)) + O(g(n)) is either O(f(n)) or O(g(n)), 
whichever is larger. And similarly for Θ.

This works when adding up any fixed, finite number of terms.

Merge Sort’s other work: Θ(1)+Θ(1)+Θ(n) OR Θ(1)+Θ(n)+Θ(n).

Result: Θ(n)—linear time—for both.

30
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Comparison Sorts II
Merge Sort — Analysis [2/3]

Analyze Merge Sort using the Master Theorem

▪ Find b, a, d.

▪ Merge Sort splits its input into 2 nearly-equal-sized parts.

▪ b = 2.

▪ Merge Sort makes 2 recursive calls.

▪ a = 2.

▪ Merge Sort’s other work, from the previous slide: linear time.

▪ f(n) is Θ(n). n is n1. So d = 1.

▪ Which Case?

▪ Compare a (= 2) with bd (= 21 = 2). a = bd → Case 2.

▪ Conclusion

▪ By Case 2 of the Master Theorem, T(n) is Θ(nd log n).

▪ That is, T(n) is Θ(n1 log n).

▪ Simplify. Merge Sort is Θ(n log n): log-linear time.
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Comparison Sorts II
Merge Sort — Analysis [3/3]

(Time) Efficiency ☺

▪ Merge Sort is Θ(n log n).

▪ Merge Sort also has an average-case time of Θ(n log n).

Requirements on Data ☺

▪ Merge Sort does not require random-access data.

▪ Operations needed. General: copy. Linked List: NONE (compare).

Space Efficiency /☺/

▪ Recursive Merge Sort uses stack space: recursion depth ≈ log2n.

▪ An iterative version can avoid this (small) memory requirement.

▪ For a Linked List, no more is needed: Θ(log n) additional space. 

▪ Or Θ(1) additional space, for an iterative version. ☺

▪ General-purpose Merge Sort uses a buffer: Θ(n) additional space. 

Stability ☺

▪ Merge Sort is stable.

Performance on Nearly Sorted Data 

▪ Merge Sort is still log-linear time on nearly sorted data.

2024-10-02 CS 311 Fall 2024

See iterative_merge_sort.cpp.
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Comparison Sorts II
Merge Sort — Notes

Merge Sort has the characteristics we are most interested in:

▪ It runs in Θ(n log n) time.

▪ It is stable.

▪ It works well with different kinds of data—Linked Lists, in particular.

▪ Note that it may be written differently for different kinds of data.

Merge Sort is very practical and is often used.

▪ Merge Sort is considered to be the fastest known general-purpose 
comparison sort:

▪ When a stable sort is required.

▪ When sorting a Linked List.

▪ Merge Sort is the usual implementation for three of the seven 
sorting algorithms in the C++ Standard Template Library.

Merge Sort is a good standard to judge sorting algorithms by.
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