
Introduction to Sorting
Comparison Sorts I

CS 311 Data Structures and Algorithms

Lecture Slides

Monday, September 30, 2024

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2005–2024 Glenn G. Chappell

Some material contributed by Chris Hartman



2024-09-30 CS 311 Fall 2024

Unit Overview
Algorithmic Efficiency & Sorting

Topics

▪ Analysis of Algorithms

▪ Introduction to Sorting

▪ Comparison Sorts I

▪ Asymptotic Notation

▪ Divide and Conquer

▪ Comparison Sorts II

▪ The Limits of Sorting

▪ Comparison Sorts III

▪ Non-Comparison Sorts

▪ Sorting in the C++ STL



2



Review

2024-09-30 CS 311 Fall 2024 3



2024-09-30 CS 311 Fall 2024

Review
Analysis of Algorithms [1/4]

Efficient [noun form: efficiency]

▪ General meaning. Using few resources: time, space, etc.

▪ Specific meaning. Fast—not using much time.

▪ Other specific meanings when qualified: space efficient, etc.

Idea for Measuring Efficiency

▪ View the tasks an algorithm performs as a series of steps. The steps 
we count are called basic operations.

▪ Determine the maximum number of basic operations required for 
input of a given size. Write this as a formula.

▪ Look at the most important part of the formula.

The most important part of n log10n + 72n + 3n2 + 936 is 3n2.

We often do not care about the 3. The really important part is n2.

4



2024-09-30 CS 311 Fall 2024

Review
Analysis of Algorithms [2/4]

Our usual model of computation:

▪ Legal operations: no data access except thru provided channels.

▪ Basic operations (the operations we count):

▪ A built-in operation on a fundamental type.

▪ A call to a client-provided function.

▪ We are given a collection. Its size is the number of items in it.

Algorithm A is order f(n) [written O(f(n))] if
there exist constants k and n0 such that

algorithm A performs no more than k×f(n)
basic operations when given input of size n ≥ n0.

Efficiency expressed using big-O tells us much of what we need to 
know to determine if an algorithm is scalable (works well with 
large problems—we say such an algorithm scales well).

It matters
what we count!

We will use big-O 
every single day 
for the rest of 
the semester.

5



2024-09-30 CS 311 Fall 2024

Review
Analysis of Algorithms [3/4]

I will also allow O(n3), O(n4), etc.

We are interested in the fastest category that an algorithm fits in.

When we use big-O with an algorithm, unless we say otherwise, we 
are describing worst-case behavior: for input of a given size, 
what is the maximum number of basic operations performed?

Using Big-O In Words

O(1) Constant time

O(log n)* Logarithmic time

O(n) Linear time

O(n log n)* Log-linear time

O(n2) Quadratic time

O(cn), for some c > 1 Exponential time

Cannot read 
all of input

Probably 
not scalable

Faster

Slower

*As we will see, 
the base of the 
logarithms does 
not matter.

6



Review
Analysis of Algorithms [4/4]

When determining big-O, we can collapse any fixed number of 
steps into a single step without altering the order.

Rule of Thumb. In nested loops with basic operations in the body 
of the innermost loop, if each loop is executed n times, or 
executed i times, where i goes up to n (plus a constant?), then 
the order is O(nt) where t is the number of nested loops.

for (int i = 0; i < n-4; ++i)

   for (int j = 0; j < i; ++j)

      for (int k = j; k < i+4; ++k)

         ++a[k];

for (int i = 0; i < n; ++i)

   for (int j = 0; j < i-5; ++j)

      for (int k = 0; k < 5; ++k)

         ++arr[j+k];

2024-09-30 CS 311 Fall 2024

O(n3)

O(n2), or quadratic time

7



Introduction to Sorting

2024-09-30 CS 311 Fall 2024 8



2024-09-30 CS 311 Fall 2024

Introduction to Sorting
Basics [1/2]

To sort a collection of data means to rearrange its items in order.

Often the items we sort are themselves collections of data. The 
part we sort by is the key.

Efficient sorting is of great interest.

▪ Sorting is a common operation.

▪ Sorting code that is written with little thought/knowledge is often 
much less efficient than code using a good algorithm.

▪ No single known sorting algorithm has all the properties we want.

▪ Some algorithms (like Binary Search) require sorted data. The 
efficiency of sorting affects the desirability of such algorithms.

3 1 3 5 25 1 2 3 5 53

3

b

1

c

3

a

5

a

2

c

5

c

1

c

2

c

3

b

5

c

5

a

3

a

Keys

Associated 
data

9



2024-09-30 CS 311 Fall 2024

Introduction to Sorting
Basics [2/2]

A sort (it is a noun here) is an algorithm that does sorting.

A comparison sort is a sort that only gets information about the 
data items in its input using a comparison function.

▪ A comparison function is a function that takes two data items and 
indicates which comes first. (Think “<”.)

▪ When we study comparison sorts, we
modify our model of computation:
there are fewer legal operations.

In the next few class meetings, we will
analyze various general-purpose
comparison sorts.

By general purpose I mean that we place no restrictions on the 
size of the list to be sorted, or the values in it. This is my own 
definition; it is not standard terminology.

3 1 3 5 25

1 2 3 5 53

x

y
x<y ?compare

10



Introduction to Sorting
Analyzing a Sort [1/2]

We analyze a general-purpose comparison sort using five factors.

▪ (Time) Efficiency

▪ What is the (worst-case!) order of the algorithm?

▪ What about average case—over all possible inputs of a given size?

▪ Requirements on Data

▪ Does the algorithm require random-access data?

▪ Does it work with Linked Lists?

▪ Space Efficiency

▪ Is the algorithm in-place (no large additional space required)?

▪ How much additional space (variables, buffers, etc.) is required?

▪ Stability

▪ Is the algorithm stable (never reverses the relative order of 
equivalent items)?

▪ Performance on Nearly Sorted Data

▪ Nearly sorted. Type 1: all items close to
proper spots. Type 2: few items out of order.

2024-09-30 CS 311 Fall 2024

“No large”, “close”, “few”: 
at most a fixed constant, 
no matter how large the 

input is.

3 1 5 3 5 2

11



Introduction to Sorting
Analyzing a Sort [2/2]

Again, we say a sort is stable if it never reverses the relative order 
of equivalent items.

Recall the example used to illustrate what keys are.

The algorithm used to sort the above list is not
stable, since the items at right, which are
equivalent, had their relative order reversed.

Remember: two items are equivalent if they have equivalent keys; 
any associated data will be ignored when comparing items.

2024-09-30 CS 311 Fall 2024

Keys

Associated 
data

3

a

3

b

3

b

1

c

3

a

5

a

2

c

5

c

1

c

2

c

3

b

5

c

5

a

3

a

12



2024-09-30 CS 311 Fall 2024

Introduction to Sorting
Overview of Algorithms

We will examine a number of sorting algorithms. Most of these fall 
into two categories: O(n2) and O(n log n).

▪ Quadratic-Time [O(n2)] Comparison Sorts

▪ Bubble Sort

▪ Insertion Sort

▪ Quicksort

▪ Log-Linear-Time [O(n log n)] Comparison Sorts

▪ Merge Sort

▪ Heap Sort (mostly later in semester)

▪ Introsort

▪ Special Purpose—Not Comparison Sorts

▪ Pigeonhole Sort

▪ Radix Sort

It may seem odd that an 
algorithm called “Quicksort” 
is in the slow category. But 
this is not a mistake! More 
about this in a few days.

13



Comparison Sorts I

2024-09-30 CS 311 Fall 2024 14



Comparison Sorts I
Bubble Sort — Description

We begin with a very simple sort: Bubble Sort.

▪ Bubble sort is easy to understand and analyze.
But we do not use it for anything practical.

Bubble Sort proceeds in a number of passes.

▪ In each pass, we compare consecutive pairs
of items. An out-of-order pair is swapped.

▪ Think of a vertical list, bottom to top. Large items rise like bubbles.

▪ After the first pass, the last item is the largest.

▪ So later passes need not go through all the data.

We can improve Bubble Sort’s performance on some nearly sorted 
data—specifically, Type 1 (all items close to proper place):

▪ In each pass, track whether we have done swaps during that pass.

▪ If not, then the data were sorted when the pass began. Quit.

2024-09-30 CS 311 Fall 2024

6

2

5

4

1

7

3

Swap?
Yes.

This pair
is next
(as 6 & 5).

15



2024-09-30 CS 311 Fall 2024

Comparison Sorts I
Bubble Sort — CODE

TO DO

▪ Examine an implementation of Bubble Sort.

▪ Analyze it.

▪ Coming up.
See bubble_sort.cpp.

16



2024-09-30 CS 311 Fall 2024

Comparison Sorts I
Bubble Sort — Analysis

(Time) Efficiency 

▪ Bubble Sort is O(n2).

▪ Bubble Sort also has an average-case time of O(n2). 

Requirements on Data ☺

▪ Bubble Sort does not require random-access data.

▪ It works on Linked Lists.

Space Efficiency ☺

▪ Bubble Sort can be done in-place.

Stability ☺

▪ Bubble Sort is stable.

Performance on Nearly Sorted Data ☺/

▪ Type 1 (all close). An optimized Bubble Sort is O(n) for all items 
close to their proper spots. ☺

▪ Type 2 (few wrong). Bubble Sort can be O(n2) if only one item is 
out of order. 

There are several 
smileys here, but these 
are more important.

17



2024-09-30 CS 311 Fall 2024

Comparison Sorts I
Bubble Sort — In Practice

Bubble Sort is virtually never used in practice. Its primary purpose 
is to be an example of an easy-to-understand sorting algorithm.

All the other sorts we cover will all be at least a little bit practical—
and some will be very practical.

18



2024-09-30 CS 311 Fall 2024

Comparison Sorts I
Insertion Sort — Description

We can think of Bubble Sort as constructing a sorted sequence in 
backwards order:

▪ Find the greatest item (by “bubbling”), then the next greatest, etc.

▪ So for each position, starting with the last, it finds the item that 
belongs there.

Suppose we flip this around.

▪ Instead of looking through the positions and determining what item 
belongs in each, look through the given items, determine in which 
position each belongs, and then insert it in that position.

This idea leads to an algorithm called Insertion Sort.

▪ Iterate through the items in the sequence.

▪ For each, insert it in the proper place among the preceding items.

▪ Thus, when we are processing item k, we have items 0 .. k–1 
already in sorted order.

19



Comparison Sorts I
Insertion Sort — Illustration

Items to the left of the bar are sorted.

2024-09-30 CS 311 Fall 2024

5 8 2 5 26

6 8 2 5 25

6 8 2 5 25

Insert 5

Insert 8

5 6 8 5 22

5 5 6 8 22

2 5 5 6 82

Insert 5

Insert 2

Two 5s

Two 2s

5 6 8 5 22

Insert 2

5

5

5

5

5

5

2 5 5 5 62

Insert 5

Sorted

Another 5

8

5

A list of size 1 is 
always sorted

Bold item: to be inserted 
into sorted section

unsortedsorted

Insert item into 
the sorted section

20



Comparison Sorts I
Insertion Sort — How to Search

What is the best way to find the insertion location—the spot in the 
sorted part of the list where an item should be inserted?

▪ Sequential Search?

▪ Binary Search?

We usually use a third option: backward Sequential Search—
Sequential Search proceeding from back to front.

Why?

▪ First, Insertion Sort is most useful when the dataset is already 
nearly sorted. For such data, a backward Sequential Search tends to 
find the insertion location quickly.

▪ Second, using Binary Search would not make the algorithm any 
faster. For an array, we need to go backwards sequentially through 
the data anyway, since each data item after the insertion location 
must be moved up. And for a Linked List—or other non-random-
access structure—Binary Search is not very fast anyway.

2024-09-30 CS 311 Fall 2024 21



2024-09-30 CS 311 Fall 2024

Comparison Sorts I
Insertion Sort — CODE

TO DO

▪ Implement Insertion Sort.

▪ Analyze, as before.

▪ Coming up.

Done. See insertion_sort.cpp.

22



Comparison Sorts I
Insertion Sort — On std::move

std::move (<utility>) takes one argument, which it casts to an 
Rvalue. Use it to force move construction/assignment.

a = b;        // Does a copy

a = move(b);  // Does a move

The second line of code above is often faster. However, when we 
do it, we are making an implicit promise: we will not use the 
current value of b again.

cout << b;    // BAD!

b = c;

cout << b;    // Okay

2024-09-30 CS 311 Fall 2024

There is another std::move, in 
<algorithm>, taking 3 arguments.

It is the move version of std::copy.

std::move does not move anything!
It casts to an Rvalue, which makes 
a non-const argument movable.

23



Comparison Sorts I
Insertion Sort — Analysis

(Time) Efficiency 

▪ Insertion Sort is O(n2).

▪ Insertion Sort also has an average-case time of O(n2). 

Requirements on Data ☺

▪ Insertion Sort does not require random-access data.

▪ It works on Linked Lists.*

Space Efficiency ☺

▪ Insertion Sort can be done in-place.

Stability ☺

▪ Insertion Sort is stable.

Performance on Nearly Sorted Data ☺

▪ The usual implementation is O(n) for both Type 1* (all close) and 
Type 2 (few wrong).

*For forward-only sequential-access data, significant extra space usage is 
required to allow for linear-time sorting of all nearly sorted datasets.

2024-09-30 CS 311 Fall 2024 24



2024-09-30 CS 311 Fall 2024

Comparison Sorts I
Insertion Sort — In Practice

Insertion Sort is too slow for most use cases.

However, Insertion Sort is useful in certain special cases.

▪ Insertion Sort is fast (linear time) for nearly sorted data.

▪ Insertion Sort is also considered fast for small lists.

Insertion Sort often appears as part of another algorithm.

▪ Optimized sorting code typically does Insertion Sort on small lists.

▪ Some sorting methods get the data nearly sorted, and then finish 
with a call to Insertion Sort. More on this when we cover Quicksort.

25


	Slide 1: Introduction to Sorting Comparison Sorts I
	Slide 2: Unit Overview Algorithmic Efficiency & Sorting
	Slide 3
	Slide 4: Review Analysis of Algorithms [1/4]
	Slide 5: Review Analysis of Algorithms [2/4]
	Slide 6: Review Analysis of Algorithms [3/4]
	Slide 7: Review Analysis of Algorithms [4/4]
	Slide 8
	Slide 9: Introduction to Sorting Basics [1/2]
	Slide 10: Introduction to Sorting Basics [2/2]
	Slide 11: Introduction to Sorting Analyzing a Sort [1/2]
	Slide 12: Introduction to Sorting Analyzing a Sort [2/2]
	Slide 13: Introduction to Sorting Overview of Algorithms
	Slide 14
	Slide 15: Comparison Sorts I Bubble Sort — Description
	Slide 16: Comparison Sorts I Bubble Sort — CODE
	Slide 17: Comparison Sorts I Bubble Sort — Analysis
	Slide 18: Comparison Sorts I Bubble Sort — In Practice
	Slide 19: Comparison Sorts I Insertion Sort — Description
	Slide 20: Comparison Sorts I Insertion Sort — Illustration
	Slide 21: Comparison Sorts I Insertion Sort — How to Search
	Slide 22: Comparison Sorts I Insertion Sort — CODE
	Slide 23: Comparison Sorts I Insertion Sort — On std::move
	Slide 24: Comparison Sorts I Insertion Sort — Analysis
	Slide 25: Comparison Sorts I Insertion Sort — In Practice

