
Recursive Backtracking

CS 311 Data Structures and Algorithms

Lecture Slides

Wednesday, September 25, 2024

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2005–2024 Glenn G. Chappell

Some material contributed by Chris Hartman



2024-09-25 CS 311 Fall 2024

Unit Overview
Recursion & Searching

Topics

▪ Arrays & Linked Lists

▪ Introduction to recursion

▪ Search algorithms I

▪ Recursion vs. iteration

▪ Search algorithms II

▪ Eliminating recursion

▪ Search in the C++ STL

▪ Recursive backtracking















2



Review

2024-09-25 CS 311 Fall 2024 3



2024-09-25 CS 311 Fall 2024

Review
Search Algorithms I/II [1/3]

The Binary Search algorithm finds a given key in a sorted list.

Procedure

▪ Pick an item in the middle of the list: the pivot.

▪ Compare the given key with the pivot.

▪ Using this, narrow search to top or bottom half of list. Recurse.

Example. Use Binary Search to search for 64 in the following list.

5 8 9 13 22 30 34 37 41 60 63 65 82 87 90 91

Look for 64 in this list.

Pivot. Is 64 < 38? No.

38

Recurse: look for 64 in this list …

4



2024-09-25 CS 311 Fall 2024

Review
Search Algorithms I/II [2/3]

The Sequential Search (a.k.a. Linear Search) algorithm finds a 
given key in a list—which is not required to be sorted.

Procedure

▪ Start from the beginning, checking each item, in order.

▪ If the desired key is the one being checked, then stop: FOUND.

▪ If we are past the end of the list, then stop: NOT FOUND.

…
65 82 41 5 87 22 9 38 60 90 13 91 37 34 8 3063

5



2024-09-25 CS 311 Fall 2024

Review
Search Algorithms I/II [3/3]

Binary Search is much faster than Sequential Search, so it can 
process much more data in the same amount of time.

“The fundamental law of computer science: As machines become 
more powerful, the efficiency of algorithms grows more 
important, not less.” [Lloyd N. Trefethen]

Number of Look-Ups
We Have Time For

Maximum List Size:
Binary Search

Maximum List Size:
Sequential Search

1 1 1

2 2 2

3 4 3

4 8 4

10 512 10

20 524,288 20

40 549,755,813,888 40

k Roughly 2k k

6



Review
Eliminating Recursion

It can sometimes be helpful to eliminate recursion—converting it 
to iteration.

We can eliminate recursion by mimicking the call
stack. This method always works, but it is
rarely used; better results are usually gotten
by thinking about the problem to be solved.

If a recursive call is a tail call (the last thing a function does), 
then we have tail recursion.

Eliminating tail recursion is easy and practical.

2024-09-25 CS 311 Fall 2024

See binsearch2.cpp, 

binsearch3.cpp, binsearch4.cpp.

More on this 
method when we 

cover Stacks.

7



2024-09-25 CS 311 Fall 2024

Review
Search in the C++ STL

The STL includes four function templates that do Binary Search:

▪ std::binary_search

▪ std::lower_bound

▪ std::upper_bound

▪ std::equal_range

All are called the same way, but they return different information. 
All allow for optional specification of a custom comparison.

The STL also includes Sequential Search:
▪ std::find

This returns an iterator to the first item found, or the end iterator 
for the given range, if nothing is found.

Some STL containers, like std::map, have their own
search by key: a member function find.

More on this 
when we 

cover Tables.

8



Recursive Backtracking

2024-09-25 CS 311 Fall 2024 9



2024-09-25 CS 311 Fall 2024

Recursive Backtracking
Basics — Backtracking [1/2]

In most programming, we proceed directly toward a goal. Work 
never needs to be undone. But what if it does?

By way of illustration, consider a maze with
specified start and finish squares.

The goal is to find a path through the maze that
goes from the start to the finish, without
passing through any walls. This is a solution.

To find a solution, we begin at the start square
and try moving in various directions. If we hit
a dead end, then we must backtrack.

S

F

S

F

S

F

10



2024-09-25 CS 311 Fall 2024

Recursive Backtracking
Basics — Backtracking [2/2]

Now we cover a different kind of search—one that proceeds along 
the lines just discussed.

Sometimes we search for a solution to a problem.

▪ We attempt to build up a solution bit by bit.

▪ We might need to undo some work and try something different.

▪ Restoring to a previous state is called backtracking.

It is often convenient to implement backtracking using recursion. 
However, such recursive programming can require different 
ways of thinking from the recursion we have discussed so far.

11



2024-09-25 CS 311 Fall 2024

Recursive Backtracking
Basics — Partial Solutions

Recursive solution search works well when we
have a notion of a partial solution:
something that might be a step on the way
to a finished full solution.

Each recursive call says, “Look for full solutions
based on this partial solution.”

For each possible more complete solution, a
recursive call is made.

To backtrack, we might simply return from a
function.

We usually have a wrapper function, so client
code does not deal with partial solutions.

S

F

S

F

Partial Solution

Partial Solution

S

F
Full Solution

12



2024-09-25 CS 311 Fall 2024

Recursive Backtracking
Basics — No-Backtracking Diagram

In the recursion we studied earlier:

▪ A recursive call is a request for information or action.

▪ The return sends back the information back—if any.

The diagram below shows the information flow in fibo_first.cpp.

fibo(3)

fibo(1)

Client

F3=? F3=2

F1=?
F1=1

fibo(2)

F2=?
F2=1

fibo(0)

F0=?
F0=0

fibo(1)

F1=?
F1=1

Goal

Q. What is F3?

A. F3 = 2.

13



2024-09-25 CS 311 Fall 2024

Recursive Backtracking
Basics — Backtracking Diagram

In recursive backtracking:

▪ A recursive call means “continue with the proposed partial solution”.

▪ Return means “backtrack”.

The diagram illustrates a search for 3-digit sequences with digits in 
{0, 1}, in which no two consecutive digits are the same.

On finding a solution, stop. Or—continue, finding all solutions.

0,0 okay?

No.

<empty> okay?

Yes. Continue.

0,1,0 okay?

Yes. OUTPUT.

0,1 okay?

Yes. Continue.

0 okay?

Yes. Continue.

1 okay?

Yes. Continue.

0,1,1 okay?

No.

1,0 okay?

Yes. Continue.

1,1 okay?

No.

1,0,0 okay?

No.

1,0,1 okay?

Yes. OUTPUT.

Add 0 Add 1

Add 0 Add 1 Add 0 Add 1

Add 0 Add 1Add 0 Add 1

Each recursive call 
handles a partial 

solution—and a full 
solution counts as 
a partial solution.

Goal

14



2024-09-25 CS 311 Fall 2024

Recursive Backtracking
Example — Description

We now look at how to solve the n-Queens Problem using 
recursive backtracking search.

Problem. Place n queens on an n×n chessboard so that none of 
them can attack each other.

Q
Q

Q
Q

Q

Q
Q

Q
Q

Q
Q

Good Good BAD

Q
Q

Q
Q

4×4 
chessboard

Queen

Can attack
N, S, E, W

 & 4 diagonals,
any distance

Q

15



Recursive Backtracking
Example — How to Do It [1/4]

To Figure Out

1. What is a partial solution for the problem we wish to solve?

2. How should we represent a partial solution in a program?

▪ If possible, we should represent a partial solution in a way that makes it 

convenient to determine whether we have a full solution.

▪ It is also nice if we can quickly determine whether we have a dead end.

3. How should we output a full solution?

1. Partial Solution. A nonattacking placement of k queens on the 
first k rows of an n×n chessboard , where 0 ≤ k ≤ n.

2024-09-25 CS 311 Fall 2024 16



2024-09-25 CS 311 Fall 2024

Recursive Backtracking
Example — How to Do It [2/4]

2. Representing a Partial Solution

▪ Number rows and columns 0 .. n–1.

▪ Two variables:

▪ n (int).

▪ board (vector of int).

▪ Variable n holds the number of 
rows/columns on the board. This is 
also the number of queens in a full 
solution.

▪ Variable board holds the columns of 
queens already placed, one per row.

▪ The size of variable board is the 
number of rows in which queens 
have been placed.

3. Outputting a Full Solution. I will 
simply print the array items.

Q
Q

Q
Q

0 1 2 3

0
1
2
3

2
0
3
1

board

Q
Q

0 1 2 3

0
1
2
3

2
0

board

Partial 
Solution

Representation

0 1 2 3

0
1
2
3

n board

empty4

n

4

n

4

17



2024-09-25 CS 311 Fall 2024

Recursive Backtracking
Example — How to Do It [3/4]

The Code

▪ Nonrecursive wrapper function

▪ Create an empty partial solution.

▪ Call the workhorse function with this partial solution.

▪ Recursive workhorse function is given a partial solution, prints 
all full solutions that can be made from it.

▪ Do we have a full solution?

▪ If so, output it.

▪ Do we have a clear dead end?

▪ If so, simply return.

▪ Otherwise:

▪ Make a recursive call for each way of
extending the partial solution.

This part might not be 
necessary. Another way 
to handle dead ends is 
simply not to make any 
recursive calls when we 
get to this part.

18



2024-09-25 CS 311 Fall 2024

Recursive Backtracking
Example — How to Do It [4/4]

Notes

▪ We often need to check the validity of a proposed way to extend a 
partial solution. It can be convenient to have a separate function 
that does this checking.

▪ When backtracking, we need to make sure we go back to the 
previous partial solution. Two ways to do this:

▪ Each recursive call has its own copy of the current partial solution.

▪ All use the same data. When backtracking, undo any changes made.

19



2024-09-25 CS 311 Fall 2024

Recursive Backtracking
Example — CODE

TO DO

▪ Write a function that uses recursive backtracking to print all 
solutions to the n-Queens Problem, for a given chessboard size.

Done. See nqueen.cpp.

20



2024-09-25 CS 311 Fall 2024

Recursive Backtracking
Counting Solutions — Diagram

We can also count solutions. Each recursive call returns the 
number of full solutions based on a given partial solution.

▪ Base Cases

▪ “Found a solution” returns 1.

▪ “Dead end” returns 0.

▪ Recursive Case

▪ Make recursive calls, add their return values, and return the total.

Add 0
Add 1

Add 0 Add 1 Add 0 Add 1

Add 0 Add 1Add 0 Add 1

1 1

1

1
1

1

0 0

00

2

<empty> okay?

Yes. Continue.

0 okay?

Yes. Continue.

1 okay?

Yes. Continue.

0,0 okay?

No.

0,1 okay?

Yes. Continue.

1,0 okay?

Yes. Continue.

1,1 okay?

No.

0,1,0 okay?

Yes.

1,0,0 okay?

No.

1,0,1 okay?

Yes.

Client

0,1,1 okay?

No.

21



2024-09-25 CS 311 Fall 2024

Recursive Backtracking
Counting Solutions — How to Do It

The Code

▪ Nonrecursive wrapper function

▪ Create an empty partial solution.

▪ Call the workhorse function with this partial solution.

▪ Return the return value of the workhorse function.

▪ Recursive workhorse function is given a partial solution, returns 
the number of full solutions that can be made from it.

▪ Do we have a full solution?

▪ If so, then return 1.

▪ Do we have a clear dead end?

▪ If so, then return 0.

▪ Otherwise:

▪ Set total to zero.

▪ For each way of extending the current partial solution, make a recursive call, 
and add its return value to total.

▪ Return total.

As before, 
this might be 
unnecessary.

22



2024-09-25 CS 311 Fall 2024

Recursive Backtracking
Counting Solutions — CODE

TO DO

▪ Modify the n-Queens code to count the number of non-attacking 
arrangements of n queens, instead of printing them all.

This n-Queens counting code is similar to what you will write for 
Assignment 4.

Done. See nqueen_count.cpp.

23



2024-09-25 CS 311 Fall 2024

Unit Overview
Algorithmic Efficiency & Sorting

Our next unit covers analyzing the efficiency of algorithms, along 
with a number of algorithms for sorting.

Topics

▪ Analysis of Algorithms

▪ Introduction to Sorting

▪ Comparison Sorts I

▪ Asymptotic Notation

▪ Divide and Conquer

▪ Comparison Sorts II

▪ The Limits of Sorting

▪ Comparison Sorts III

▪ Non-Comparison Sorts

▪ Sorting in the C++ STL

The Midterm Exam will be given at the end of this unit.

24


	Slide 1: Recursive Backtracking
	Slide 2: Unit Overview Recursion & Searching
	Slide 3
	Slide 4: Review Search Algorithms I/II [1/3]
	Slide 5: Review Search Algorithms I/II [2/3]
	Slide 6: Review Search Algorithms I/II [3/3]
	Slide 7: Review Eliminating Recursion
	Slide 8: Review Search in the C++ STL
	Slide 9
	Slide 10: Recursive Backtracking Basics — Backtracking [1/2]
	Slide 11: Recursive Backtracking Basics — Backtracking [2/2]
	Slide 12: Recursive Backtracking Basics — Partial Solutions
	Slide 13: Recursive Backtracking Basics — No-Backtracking Diagram
	Slide 14: Recursive Backtracking Basics — Backtracking Diagram
	Slide 15: Recursive Backtracking Example — Description
	Slide 16: Recursive Backtracking Example — How to Do It [1/4]
	Slide 17: Recursive Backtracking Example — How to Do It [2/4]
	Slide 18: Recursive Backtracking Example — How to Do It [3/4]
	Slide 19: Recursive Backtracking Example — How to Do It [4/4]
	Slide 20: Recursive Backtracking Example — CODE
	Slide 21: Recursive Backtracking Counting Solutions — Diagram
	Slide 22: Recursive Backtracking Counting Solutions — How to Do It
	Slide 23: Recursive Backtracking Counting Solutions — CODE
	Slide 24: Unit Overview Algorithmic Efficiency & Sorting

