
Thoughts on Assignment 3
Recursion vs. Iteration

CS 311 Data Structures and Algorithms

Lecture Slides

Friday, September 20, 2024

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2005–2024 Glenn G. Chappell

Some material contributed by Chris Hartman

Thoughts on Assignment 3

2024-09-20 CS 311 Fall 2024 2

2024-09-20 CS 311 Fall 2024

Thoughts on Assignment 3 [1/2]

In Assignment 3, you will be writing multiple functions and function
templates relating to recently covered topics:

▪ Iterators.

▪ Linked Lists.

▪ Exceptions.

▪ Recursion.

Your functions are to be in files da3.hpp and da3.cpp. You will also
need the llnode.hpp header. As usual, there is a test program,
da3_test.cpp, using the doctest header: doctest.h.

Do not modify llnode.hpp.

3

2024-09-20 CS 311 Fall 2024

Thoughts on Assignment 3 [2/2]

To get you started, I have written “skeleton” forms of the files
da3.hpp and da3.cpp; these are in the class Git repository.

These files already compile with the test program. But they fail
numerous tests. Your job is to get them working.

4

2024-09-20 CS 311 Fall 2024

Unit Overview
Recursion & Searching

Topics

▪ Arrays & Linked Lists

▪ Introduction to recursion

▪ Search algorithms I

▪ Recursion vs. iteration

▪ Search algorithms II

▪ Eliminating recursion

▪ Search in the C++ STL

▪ Recursive backtracking







5

Review

2024-09-20 CS 311 Fall 2024 6

2024-09-20 CS 311 Fall 2024

Review
Search Algorithms I — Binary Search

The Binary Search algorithm finds a given key in a sorted list.

▪ Here, key = thing to search for. Often there is associated data.

▪ In computing, sorted means in (some specified) order.

Procedure

▪ Pick an item in the middle of the list: the pivot.

▪ Compare the given key with the pivot.

▪ Using this, narrow search to top or bottom half of list. Recurse.

Example. Use Binary Search to search for 64 in the following list.

5 8 9 13 22 30 34 37 41 60 63 65 82 87 90 91

Look for 64 in this list.

Pivot. Is 64 < 38? No.

38

Recurse: look for 64 in this list …

See binsearch1.cpp.In practice, a key could
be just about anything

that can be sorted.

7

2024-09-20 CS 311 Fall 2024

Review
Search Algorithms I — Better Binary Search

Equality vs. Equivalence—may not be the same when objects being
compared are not numbers.

▪ Equality: a == b.

▪ Equivalence: !(a < b) && !(b < a).

Using equivalence instead of equality in Binary Search:

▪ Maintains consistency: always compare with operator<.

▪ Allows use with value types that do not have operator==.

Using Operators
Random-access iterators only

Using STL Function Templates

Works with all forward iterators

Still fast with random-access

iter += n std::advance(iter, n)

iter + n std::next(iter, n)

iter2 - iter1 std::distance(iter1, iter2)

See binsearch2.cpp.

8

Recursion vs. Iteration

2024-09-20 CS 311 Fall 2024 9

2024-09-20 CS 311 Fall 2024

Recursion vs. Iteration
Definitions

There are two ways for code to repeatedly perform an operation an
arbitrary number of times.

▪ Iteration. Using one or more loops.
Code that performs iteration is said to be iterative.

▪ Recursion. When a function calls itself.
Code that performs recursion is said to be recursive.

Now we look closer at these two.

Along the way, we will compute Fibonacci numbers using several
different methods.

10

2024-09-20 CS 311 Fall 2024

Recursion vs. Iteration
Fibonacci Again — Faster

We wrote a function that, given n, returns Fibonacci number n. For
n > 40, our function is extremely slow.

What can we do about this?

TO DO

▪ Rewrite the Fibonacci computation
in a fast iterative form.

TO DO

▪ Figure out how to do a fast recursive
Fibonacci computation. Write it.

Wow! Recursion

is a lot slower
than iteration!

Not
necessarily.

See fibo_first.cpp.

Done. See
fibo_iterate.cpp.

Done. See
fibo_recurse.cpp.

11

2024-09-20 CS 311 Fall 2024

Recursion vs. Iteration
Fibonacci Again — Using Trees

Use a tree to represent function calls some algorithm makes.

▪ A box represents making a call to a function.

▪ A line from an A box down to a B box represents
this call to function A making a call to function B.

int ff(int n)

{

 return gg(n-1) + gg(n);

}

int gg(int k)

{

 if (k == 0) return 7;

 else return 2*gg(k-1);

}

Tree representing calls
made by doing ff(2)

Same function.
Different invocations

of that function.

(Yes, our trees are upside-down.)

ff(2)

A

B

gg(1) gg(2)

gg(1)

gg(0)

gg(0)

12

2024-09-20 CS 311 Fall 2024

Recursion vs. Iteration
Fibonacci Again — Comments [1/3]

Choice of algorithm can make a huge difference in performance.

fibo_first.cppfibo_recurse.cpp
Computing F6

25 function
calls

8 function
calls

Fibonacci No. fibo_recurse.cpp fibo_first.cpp

F7 9 calls 41 calls

F10 12 calls 177 calls

F20 22 calls 21,891 calls

F40 42 calls 331,160,281 calls

F5

F3 F4

F1 F2

F0 F1

F2

F0 F1

F3

F1 F2

F0 F1

F4

F2

F0 F1

F3

F1 F2

F0 F1

F6

F5 & F6

F6

F4 & F5

F3 & F4

F2 & F3

F1 & F2

F0 & F1

F-1 & F0

13

Recursion vs. Iteration
Fibonacci Again — Comments [2/3]

A struct can be used to return two values at once. Templates
std::pair (<utility>) and std::tuple (<tuple>) can be
helpful.

The 2017 C++ Standard introduced structured bindings, making
this more convenient.

pair<bignum, bignum> fibo_recurse(int n);

auto [a, b] = fibo_recurse(k);

2024-09-20 CS 311 Fall 2024

Now a and b are
variables of type bignum.

a is fibo(k-1).

b is fibo(k).

14

2024-09-20 CS 311 Fall 2024

Recursion vs. Iteration
Fibonacci Again — Comments [3/3]

Some algorithms have natural implementations in both recursive
and iterative form.

Sometimes we have a workhorse function that does most of the
processing, and a wrapper function with a convenient interface.

▪ Often the wrapper just calls the workhorse for us.

▪ This is common when we use recursion, since recursion can place
restrictions on how a function is called.

We have seen this idea in another context. Recall toString and
operator<< from Assignment 1.

cout << p.toString();

cout << p;

If we had not written our own
operator<<, then we could still do
this.

With our operator<<, we can do
this. So operator<< is really just a
convenient wrapper around toString.

15

2024-09-20 CS 311 Fall 2024

Recursion vs. Iteration
Function-Call Internals [1/4]

To fully grasp the issues involved in recursion vs. iteration, it helps
to understand how function calls work in a running program.

A running program makes use of a structure called the call stack.
(There are other names, all involving the word “stack”.)

A Stack is a kind of container. We look at
Stacks in detail later in the semester.
For now:

▪ Think of a stack of plates. We can place
a plate on top or pull a plate off the top.
We only deal with the top of the Stack.

▪ Taking off the top item is a pop.

▪ Adding a new item on top is a push.

Top of the
Stack. Pop

removes
this item. Stack

Push adds
a new

item here.

16

Recursion vs. Iteration
Function-Call Internals [2/4]

The items on the call stack are
stack frames. Each stack
frame corresponds to an
invocation of a function.

▪ A function’s stack frame
holds:

▪ Its automatic variables,
including parameters.

▪ Its return address: where

to go back to when it
returns.

▪ When a function is called, a
stack frame for that function
is pushed.

▪ When the function exits, its
stack frame is popped.

void cat(Foo c)

{

int d;

llama();

…

}

void dog(int a)

{

Foo b;

cat(b);

}

2024-09-20 CS 311 Fall 2024

return address

c

cat

return address

a

dog

Call

Stack

Stack
Frame

Stack
Frame

d

b

When cat is
called by dog, at
this point in the
code, the call

stack will look
like this.

17

Recursion vs. Iteration
Function-Call Internals [3/4]

When a function calls itself recursively, there will be multiple stack
frames on the call stack corresponding to the same function—
but different invocations of that function.

void zebra(int n)

{

 if (n == 0)

 {

 cout << n << endl;

 return;

 }

 cout << n << " ";

 zebra(n-1);

}

2024-09-20 CS 311 Fall 2024

return address

n: 1

zebra

return address

n: 2

zebra

return address

n: 3

zebra

return address

n: 0

zebra

Call

Stack

18

2024-09-20 CS 311 Fall 2024

Recursion vs. Iteration
Function-Call Internals [4/4]

A function call’s recursion depth is the greatest number of stack
frames on the call stack at any one time as a result of the call.

When analyzing time usage, the total number of calls is of interest.

When analyzing space usage, the recursion depth is of interest.

fibo_first.cppfibo_recurse.cpp

Recursion depth: 8 Recursion depth: 6

F5

F3 F4

F1 F2

F0 F1

F2

F0 F1

F3

F1 F2

F0 F1

F4

F2

F0 F1

F3

F1 F2

F0 F1

F6

F5 & F6

F6

F4 & F5

F3 & F4

F2 & F3

F1 & F2

F0 & F1

F-1 & F0

19

Two factors can make recursive code inefficient, compared to
iterative code.

▪ Inherent inefficiency of some recursive algorithms

▪ But there are efficient recursive algorithms.

▪ Function-call overhead

▪ Making all those function calls requires work:

pushing and popping stack frames, saving
return addresses, creating and

destroying automatic variables.

And recursion has another problem.

▪ Memory-management issues

▪ A high recursion depth causes the system to run out of memory for the

call stack. This is stack overflow, and it generally cannot be dealt with
using normal error-handling procedures. The result is usually a crash.

▪ When we use iteration, we can manage memory ourselves. This can be

more work for the programmer, but it also allows proper error handling.

2024-09-20 CS 311 Fall 2024

Recursion vs. Iteration
Drawbacks of Recursion

These two are
important
regardless of the
recursive
algorithm used.

20

Dynamic programming (which does not mean what it sounds
like) can greatly speed up some recursive algorithms.

▪ We save the results of computations, to avoid repeating them.

▪ In some contexts, this technique is
called memoizing.

Apply this idea to
fibo_first.cpp.
Blue recursive calls
are no longer necessary.

2024-09-20 CS 311 Fall 2024

Recursion vs. Iteration
Fibonacci Yet Again — Dynamic Programming

See fibo_memo.cpp.

11 function calls,
instead of 25

Fibonacci No. fibo_recurse.cpp fibo_memo.cpp fibo_first.cpp

F10 12 calls 19 calls 177 calls

F20 22 calls 39 calls 21,891 calls

F40 42 calls 79 calls 331,160,281 calls

Dynamic
programming
is covered in

CS 411.

F5

F3 F4

F1 F2

F0 F1

F2

F0 F1

F3

F1 F2

F0 F1

F4

F2

F0 F1

F3

F1 F2

F0 F1

F6

21

There is a simple formula for Fn, using non-integer computations.

Let . (This is often called the golden ratio.)

For each nonnegative integer n, Fn is the nearest integer to .

Here is fibo using this formula:

bignum fibo(int n)

{

 long double phi = (1.0L + sqrt(5.0L)) / 2.0L;

 long double near_fibo = pow(phi, n) / sqrt(5.0L);

 // Our Fibonacci number is the nearest integer

 return bignum(near_fibo + 0.5L);

}

2024-09-20 CS 311 Fall 2024

Recursion vs. Iteration
Fibonacci Yet Again — Formula

6180339.1
2

51


+
=

5

n

See fibo_formula.cpp.

A floating-point literal with an “L” added
at the end is of type long double.

22

An even faster method of computing Fibonacci numbers relies on
the following facts:

▪ F2n–1 = (Fn–1)
2 + (Fn)

2.

▪ F2n = 2Fn–1Fn + (Fn)
2.

For the fast methods we mentioned earlier, computing Fn requires
something like n arithmetic operations. But using the above
facts, we can compute Fn using something like log n arithmetic
operations—much less, when n is large.

This allows for easy computation of Fibonacci numbers that are
much larger than any C++ built-in integer type can hold. To
illustrate the power of this method, I have implemented it in
Python, which has a built-in arbitrarily large integer type.

2024-09-20 CS 311 Fall 2024

Recursion vs. Iteration
Fibonacci Yet Again — Very Fast

See fibo_fast.py.

23

A single problem may be solvable by many different methods.

▪ Different methods can have very different performance
characteristics.

▪ It is possible that a very efficient method is not at all obvious.

Computing Fibonacci numbers is not something we need to do very
often, in practice. But the above observations apply to other
problems as well.

Next we will return to the problem of finding a key in a list.

2024-09-20 CS 311 Fall 2024

Recursion vs. Iteration
Fibonacci Yet Again — Comments

24

	Slide 1: Thoughts on Assignment 3 Recursion vs. Iteration
	Slide 2
	Slide 3: Thoughts on Assignment 3 [1/2]
	Slide 4: Thoughts on Assignment 3 [2/2]
	Slide 5: Unit Overview Recursion & Searching
	Slide 6
	Slide 7: Review Search Algorithms I — Binary Search
	Slide 8: Review Search Algorithms I — Better Binary Search
	Slide 9
	Slide 10: Recursion vs. Iteration Definitions
	Slide 11: Recursion vs. Iteration Fibonacci Again — Faster
	Slide 12: Recursion vs. Iteration Fibonacci Again — Using Trees
	Slide 13: Recursion vs. Iteration Fibonacci Again — Comments [1/3]
	Slide 14: Recursion vs. Iteration Fibonacci Again — Comments [2/3]
	Slide 15: Recursion vs. Iteration Fibonacci Again — Comments [3/3]
	Slide 16: Recursion vs. Iteration Function-Call Internals [1/4]
	Slide 17: Recursion vs. Iteration Function-Call Internals [2/4]
	Slide 18: Recursion vs. Iteration Function-Call Internals [3/4]
	Slide 19: Recursion vs. Iteration Function-Call Internals [4/4]
	Slide 20: Recursion vs. Iteration Drawbacks of Recursion
	Slide 21: Recursion vs. Iteration Fibonacci Yet Again — Dynamic Programming
	Slide 22: Recursion vs. Iteration Fibonacci Yet Again — Formula
	Slide 23: Recursion vs. Iteration Fibonacci Yet Again — Very Fast
	Slide 24: Recursion vs. Iteration Fibonacci Yet Again — Comments

