
Arrays & Linked Lists
Introduction to Recursion

CS 311 Data Structures and Algorithms

Lecture Slides

Monday, September 16, 2024

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2005–2024 Glenn G. Chappell

Some material contributed by Chris Hartman

Unit Overview
Advanced C++ & Software Engineering Concepts

Topics: Advanced C++

▪ Expressions

▪ Parameter passing I

▪ Operator overloading

▪ Example class

▪ Parameter passing II

▪ Invisible functions I

▪ Managing resources in a class

▪ Containers & iterators

▪ Invisible functions II

▪ Error handling

▪ Using exceptions

Topics: S.E. Concepts

▪ Abstraction

▪ Assertions

▪ Testing

▪ Invariants



2024-09-16 CS 311 Fall 2024





























2

Review

2024-09-16 CS 311 Fall 2024 3

2024-09-16 CS 311 Fall 2024

Review
Error Handling

An error condition (often error) is a condition occurring during
runtime that cannot be handled by the normal flow of execution.

▪ Not necessarily a bug or a user mistake.

▪ Example: Could not read file.

before

during

after

Three (and only three) ways
to deal with a possible error

condition in a function:

Prevention
Client code must prevent
the error (precondition).

Containment
Fix the problem inside the
function.

We like
these two,
but they
might not
be feasible

At least three ways to
signal an error condition

to client code:

Return an error code

Set a flag, checked by
a separate function

Throw an exceptionSignal the Client Code
Idea: When we cannot
fulfill our postconditions.

4

Review
Using Exceptions [1/4]

Exception: an object that is thrown to signal an error condition.

To handle an exception, catch it using try … catch.

Foo * p;

bool success = true;

try {

 p = new Foo;

}

catch (std::bad_alloc & e) {

 success = false;

 cerr << "Alloc. failed: "

 << e.what() << endl;

}

2024-09-16 CS 311 Fall 2024

How It Works

▪ When an exception is thrown
inside a try-block, control
passes to the catch-block that
is associated with the smallest
possible enclosing try-block
that catches the proper type.
Derived classes are handled as
usual.

▪ In all other circumstances, a
catch-block is not executed.

▪ An uncaught exception
terminates the program.

new throws
std::bad_alloc
(<new>) or a derived
class, if memory
allocation fails.

5

Review
Using Exceptions [2/4]

Catch—when you can handle an error signaled by a function you call.

try { … }

catch (std::out_of_range & e) {

Throw—when your function is unable to fulfill its postconditions.

if (ix >= arrsize) throw std::out_of_range("bad index");

Catch all & re-throw—when you call a throwing function, and you cannot
handle the error, but your function must clean up before exiting.

try { … }

catch (...) {

[Clean up here]

throw; }

2024-09-16 CS 311 Fall 2024

We typically only write one of the three:
catch, throw, or catch all & re-throw.

Another might be written by someone else.

The code contains
three dots.

Catch exceptions
by reference.

6

Review
Using Exceptions [3/4]

Destructors should not throw.

Why? Destructors are called when an automatic
object goes out of scope due to an exception. If the destructor
throws in this context, then the program terminates.

Because of this, generally the destructors in your classes are
implicitly marked noexcept—a promise that they will not throw.

2024-09-16 CS 311 Fall 2024

It is okay for
constructors

to throw.

7

Review
Using Exceptions [4/4]

Some people do not like exceptions. Some of these people are very
vocal about their dislike. But I think that some of them dislike
exceptions for the wrong reasons.

A bad reason to dislike exceptions is that they require lots of work.

▪ Dealing with error conditions is work. Writing software that works is
work. Exceptions are one tool we can use to achieve this goal.

▪ Handling exceptions properly is hard work because writing correct
software is hard work.

What might be a good reason to dislike exceptions is that they add
hidden execution paths. But remember that other error-handling
methods have their own downsides—which is why exceptions
were invented.

2024-09-16 CS 311 Fall 2024 8

2024-09-16 CS 311 Fall 2024

Unit Overview
Recursion & Searching

This ends the introductory material.

We now begin a unit on recursion and searching.

Topics

▪ Arrays & Linked Lists

▪ Introduction to recursion

▪ Search algorithms I

▪ Recursion vs. iteration

▪ Search algorithms II

▪ Eliminating recursion

▪ Search in the C++ STL

▪ Recursive backtracking

After this, we will cover Algorithmic Efficiency & Sorting.

There will be a number of topics like
this one—typically at the end of our
coverage of some data structure or
algorithmic idea.

9

Arrays & Linked Lists

2024-09-16 CS 311 Fall 2024 10

2024-09-16 CS 311 Fall 2024

Arrays & Linked Lists
Arrays

This unit covers recursion and searching. In-depth coverage of
data structures will wait until later in the semester. But if we are
taking about searching, then we need data structures to search.

The simplest container data structure is the array. This stores a
sequence of items, placing them one after the other in a
contiguous block of memory.

An array is a random-access structure. Since we know where in
memory each item lies, we can look up an item quickly by its
index, typically using a bracket operator: cout << arr[1000];

In C++, the following hold arrays: std::vector, std::array,
std::basic_string (basis of std::string), and built-in arrays.

3 1 3 5 2Array 5

11

2024-09-16 CS 311 Fall 2024

Arrays & Linked Lists
Linked Lists — Basics [1/2]

Another container data structure is the Linked List. Like an array,
a Linked List stores a sequence of items.

A Linked List is made of nodes. Each has a single data item and a
pointer to the next node, or a null pointer at the end of the list.
We keep track of a Linked List using its head pointer.

A Linked List is a forward-only sequential-access structure. To find
items, we follow pointers though the list. We cannot quickly find
the 100,000th item. Nor can we quickly find the previous item.

513 3 5 2

Head
Null pointer

3 1 3 5 2Array

Linked

List

5

Nodes

12

Arrays & Linked Lists
Linked Lists — Basics [2/2]

We cannot quickly find a Linked List item, given only its index.

Why not? It certainly looks as if we could.

But the above picture can be deceptive. A Linked List might
actually be arranged in memory more like this:

2024-09-16 CS 311 Fall 2024

513 3 5 2

Why are we unable to
make this jump instantly?

1

3

52

Head

Head

5

3

13

2024-09-16 CS 311 Fall 2024

Arrays & Linked Lists
Linked Lists — Advantages

Why not always use (smart) arrays?

One reason: Linked Lists support fast insertion.

Suppose we have a sequence 3, 1, 5, 3, 5, 2.
We wish to insert a 7 before the first 5.

With an array, we move all later items up.
For a large array this can be very slow.

With a Linked List, if we
know the location,
insertion is fast.

For large datasets,
the speed-up can
be huge.

513 3 5 2

3 1 3 5 25

3 1 3 5 257

513 3 5 2

7

Array

Linked

List

14

2024-09-16 CS 311 Fall 2024

Arrays & Linked Lists
Linked Lists — Implementation [1/2]

Here is one possible implementation of a Linked List node.

template <typename ValType>

struct LLNode {

 ValType _data; // Data for this node

 LLNode * _next; // Ptr to next node, or nullptr if none

 // The following simplify creation & destruction

 explicit LLNode(const ValType & data,

 LLNode * next = nullptr)

 :_data(data), _next(next)

 {}

 ~LLNode()

 { delete _next; }

};

The head of our Linked List would hold an (LLNode<…> *).

The data members are public??!?!?

In practice, only the Linked List package deals
with this struct, so these are not a problem.

6

_data _next

If _next points to a node, then delete calls that
node’s destructor, which will delete its _next pointer,
which calls the destructor of the node after that, etc.

So this destructor calls itself; it is recursive. This is
convenient! However, it can be problematic if there
are lots of nodes. More on this later in the semester.

15

2024-09-16 CS 311 Fall 2024

Arrays & Linked Lists
Linked Lists — Implementation [2/2]

TO DO

▪ Write a function to find the size (number of items) of a Linked List,
given its head pointer (LLNode<…> *).

Done. See use_list.cpp.

The llnode.hpp header

defines LLNode.

16

2024-09-16 CS 311 Fall 2024

Arrays & Linked Lists
Linked Lists — Doubly Linked Lists

In a Doubly Linked List, each node has two pointers: next-node
(null at the end) and previous-node (null at the beginning).

Doubly Linked Lists typically have not only a beginning-of-list
pointer, but also an end-of-list pointer.

A Doubly Linked List is a bidirectional sequential-access structure.

To make it clear what we are talking about, the one-pointer-per-
node Linked List has a more precise name: Singly Linked List.

3

(Singly)

Linked List

Doubly

Linked List

1 5 4 5

3 1 5 4 5

End-of-list
pointer

We cover Linked
Lists in more
detail later in
the semester.

17

Introduction to Recursion

2024-09-16 CS 311 Fall 2024 18

Introduction to Recursion
Basics — Definitions

A recursive algorithm is one that
makes use of itself.

▪ An algorithm solves a problem.
If we can write the solution of a

problem in terms of the solutions

to smaller problems of the
same kind, then recursion may

be called for.

▪ There must be a smallest
problem, which we solve

directly. This is a base case.
Others are recursive cases.

Similarly, a recursive function is
one that calls itself.

▪ Such calls are typically direct,

but may be indirect.

▪ When a function calls itself, it is
making a recursive call. We

also say it recurses.

int mult(int a, int b)

{

if (a <= 1)

return a == 1 ? b : 0;

int ax = (a >> 1);

int m1 = mult(ax, b);

return m1 + m2(a, ax, b);

}

int m2(int a, int ax, int b)

{

return mult(a-ax, b);

}

2024-09-16 CS 311 Fall 2024

Base case

Direct recursion

Indirect recursion

Recursive
case

19

2024-09-16 CS 311 Fall 2024

Introduction to Recursion
Basics — Four Questions

When designing a recursive algorithm or function, consider the
following four questions*:

1. How can we solve the problem using solutions to one or more
smaller problems of the same kind?

2. How much does each recursive call reduce the size of the
problem?

3. What instances of the problem can serve as base cases?

4. As the problem size shrinks, will a base case always be
reached?

*Adapted from Frank M. Carrano, Data Abstraction and Problem Solving
with C++: Walls and Mirrors, 4th ed., 2004.

This is critical!

Every call to a recursive function
must eventually reach a base case.

20

2024-09-16 CS 311 Fall 2024

Introduction to Recursion
Fibonacci Numbers — Definitions [1/2]

The Fibonacci numbers are the sequence 0, 1, 1, 2, 3, 5, 8, 13,
21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, …

To get the next Fibonacci number, add the two before it.

We denote the nth Fibonacci number by Fn (n = 0, 1, 2, …).
So F0 = 0, F1 = 1, F2 = 1, F3 = 2, F4 = 3, etc.

Now we can formally define the Fibonacci
numbers as follows:

▪ F0 = 0.

▪ F1 = 1.

▪ For n ≥ 2, Fn = Fn–2 + Fn–1.
Why are we talking about this?

Computing Fibonacci numbers is our
first example of a problem that can be

solved by algorithms that differ
greatly in performance. And some of

these algorithms are recursive.

Denote = use notation
for something.

So “Fn” is our notation
for the nth Fibonacci

number.

21

2024-09-16 CS 311 Fall 2024

Introduction to Recursion
Fibonacci Numbers — Definitions [2/2]

The Fibonacci numbers (Fn, for n = 0, 1, 2, …):

▪ F0 = 0.

▪ F1 = 1.

▪ For n ≥ 2, Fn = Fn–2 + Fn–1.

An equation defining a sequence of numbers in terms of itself, as
above, is a recurrence relation (often simply recurrence).

The values for the start of the sequence are initial conditions.

A recurrence often translates nicely into a recursive algorithm.

Let’s do such a translation for the Fibonacci numbers: we write a
recursive function fibo that takes an integer n and returns the
nth Fibonacci number Fn.

22

2024-09-16 CS 311 Fall 2024

Introduction to Recursion
Fibonacci Numbers — Four Questions

1. How can we solve the problem using solutions to one or more
smaller problems of the same kind?

▪ Use the recurrence: Fn = Fn–2 + Fn–1.

2. How much does each recursive call reduce the size of the
problem?

▪ Say the size is n. The first call reduces it by 2. The second call by 1.

3. What instances of the problem can serve as base cases?

▪ Use the initial conditions: n = 0, n = 1.

4. As the problem size shrinks, will a base case always be
reached?

▪ Yes, as long as n is nonnegative.

▪ So function fibo should have “n >= 0” as a precondition.

Smaller problems
of the same kind

23

2024-09-16 CS 311 Fall 2024

Introduction to Recursion
Fibonacci Numbers — Design Decisions

fibo takes an integer n and returns the nth Fibonacci number Fn.
I will write Fn as F(n) in source-code comments.

What should the parameter and return types for fibo be?

▪ The parameter can be int.

▪ As n grows, Fn will grow very quickly. We may wish to guard against
numeric overflow. Let’s use a 64-bit unsigned integer for the
return type: std::uint_fast64_t. A type alias could be helpful:

using bignum = uint_fast64_t;

What pre- and postconditions does fibo have?

▪ Pre: n >= 0. Also, F(n) is a within the range of values of bignum.
(Some checking shows that this requires n <= 93 on my system.)

▪ Post: Return == F(n).

24

2024-09-16 CS 311 Fall 2024

Introduction to Recursion
Fibonacci Numbers — CODE

When we write a recursive function, we usually want to check for
the base case(s) first. If we are not in a base case, then we are
in a recursive case.

TO DO

▪ Write recursive function fibo, as described.

Function fibo turns out to be extremely slow for anything other
than small parameters. But do not conclude that recursion is
slow! We will revisit fibo, rewriting it in various ways—including
fast recursive versions.

Done. See fibo_first.cpp.

25

	Slide 1: Arrays & Linked Lists Introduction to Recursion
	Slide 2: Unit Overview Advanced C++ & Software Engineering Concepts
	Slide 3
	Slide 4: Review Error Handling
	Slide 5: Review Using Exceptions [1/4]
	Slide 6: Review Using Exceptions [2/4]
	Slide 7: Review Using Exceptions [3/4]
	Slide 8: Review Using Exceptions [4/4]
	Slide 9: Unit Overview Recursion & Searching
	Slide 10
	Slide 11: Arrays & Linked Lists Arrays
	Slide 12: Arrays & Linked Lists Linked Lists — Basics [1/2]
	Slide 13: Arrays & Linked Lists Linked Lists — Basics [2/2]
	Slide 14: Arrays & Linked Lists Linked Lists — Advantages
	Slide 15: Arrays & Linked Lists Linked Lists — Implementation [1/2]
	Slide 16: Arrays & Linked Lists Linked Lists — Implementation [2/2]
	Slide 17: Arrays & Linked Lists Linked Lists — Doubly Linked Lists
	Slide 18
	Slide 19: Introduction to Recursion Basics — Definitions
	Slide 20: Introduction to Recursion Basics — Four Questions
	Slide 21: Introduction to Recursion Fibonacci Numbers — Definitions [1/2]
	Slide 22: Introduction to Recursion Fibonacci Numbers — Definitions [2/2]
	Slide 23: Introduction to Recursion Fibonacci Numbers — Four Questions
	Slide 24: Introduction to Recursion Fibonacci Numbers — Design Decisions
	Slide 25: Introduction to Recursion Fibonacci Numbers — CODE

