
Thoughts on Assignment 2
Error Handling
Using Exceptions

CS 311 Data Structures and Algorithms

Lecture Slides

Friday, September 13, 2024

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2005–2024 Glenn G. Chappell

Some material contributed by Chris Hartman

Unit Overview
Advanced C++ & Software Engineering Concepts

Topics: Advanced C++

▪ Expressions

▪ Parameter passing I

▪ Operator overloading

▪ Example class

▪ Parameter passing II

▪ Invisible functions I

▪ Managing resources in a class

▪ Containers & iterators

▪ Invisible functions II

▪ Error handling

▪ Using exceptions

Topics: S.E. Concepts

▪ Abstraction

▪ Assertions

▪ Testing

▪ Invariants



2024-09-13 CS 311 Fall 2024

























2

Review

2024-09-13 CS 311 Fall 2024 3

2024-09-13 CS 311 Fall 2024

Review
Software Engineering Concepts: Invariants

An invariant is a condition that is always true at a particular point
in a computation. Example: the condition used in an assertion.

Three Special Kinds

▪ Precondition. Invariant at the beginning of a function. The
responsibility for ensuring the preconditions hold lies with the caller.

▪ What must be true for the function to

execute properly.

▪ Postcondition. Invariant at the end
of a function. Tells what services the function has performed.

▪ Describe the function’s effect using statements about values.

▪ Class invariant. Invariant that holds whenever an object of the
class exists, and execution is not inside a member function.

▪ Statements about data members that indicate what it means for an

object to be valid or usable.

▪ These are preconditions for all member functions except ctors, and
postconditions for all member functions except the dctor.

Pre- and postconditions are the
basis for operation contracts.

4

Review
Software Engineering Concepts: Invariants — TRY IT (Exercise)

Exercise

▪ Write pre- and postconditions
for the one-parameter
constructor for class Abc.

See next slide for answers.

// class Abc

// Invariants:

// 0 <= _n && _n < 100

class Abc {

public:

 Abc(int nn)

 :_n(nn)

 {}

 [other stuff here]

private:

 int _n;

}; // End class Abc

2024-09-13 CS 311 Fall 2024 5

Review
Software Engineering Concepts: Invariants — TRY IT (Answers)

Exercise

▪ Write pre- and postconditions
for the one-parameter
constructor for class Abc.

Answers

// Pre:

// 0 <= nn && nn < 100

// Post:

// _n == nn

// class Abc

// Invariants:

// 0 <= _n && _n < 100

class Abc {

public:

 Abc(int nn)

 :_n(nn)

 {}

 [other stuff here]

private:

 int _n;

}; // End class Abc

2024-09-13 CS 311 Fall 2024

0 <= _n && _n < 100

is also a postcondition.
But that is already in the
class invariants, and we
do not need to repeat it.

6

Thoughts on Assignment 2

2024-09-13 CS 311 Fall 2024 7

Thoughts on Assignment 2
Overview of Ideas

In Assignment 2 you write a “moderately smart” array (MSArray).

This will require applying some recently covered ideas.

▪ Managing Resources in a Class

▪ Are you doing dynamic allocation correctly? When you allocate
something, is it always freed?

▪ MSArray uses RAII.

▪ What type to use for the size of an MSArray? For array indices?

▪ Containers & Iterators

▪ MSArray is a generic container. Its member functions begin and end

return iterators.

▪ Software Engineering Concepts: Invariants

▪ You will need to document preconditions for each function that has
them and class invariants for each class.

▪ Invisible Functions II

▪ MSArray directly manages a resource. You will need to define all of
the Big Five. (Do not apply the Rule of Zero in Assignment 2!)

2024-09-13 CS 311 Fall 2024 8

Thoughts on Assignment 2
Templates [1/2]

MSArray is a class template, like std::vector.

MSArray<int> ia;

Define it like this:

template <typename ValType>

class MSArray {

public:

 using value_type = ValType;

 …

};

Templates go entirely in the header. Do not write a separate
source file for MSArray.

2024-09-13 CS 311 Fall 2024

Template parameter.
Name this whatever you
want.

A template parameter can be
used inside the template
definition (and only there!).

If an MSArray variable is
declared as above, then
ValType means int here.

Normal class definition, with
member functions, etc.

9

Thoughts on Assignment 2
Templates [2/2]

Each associated global function is actually a function template.
Define one of these (in the header file!) like this:

template <typename ValType>

bool operator==(const MSArray<ValType> & a,

 const MSArray<ValType> & b)

{

 return …

}

2024-09-13 CS 311 Fall 2024

Inside the class template definition
(see the previous slide) and
definitions of member functions,
write MSArray. In other places, like
here, write MSArray<whatever>.

10

Thoughts on Assignment 2
Documentation

Document class invariants for all classes and preconditions for
all functions that have them.

// Invariants: …

template <typename ValType>

class MSArray {

 …

};

// Pre: …

template <typename ValType>

bool operator==(…)

2024-09-13 CS 311 Fall 2024

If there are any
preconditions.

11

2024-09-13 CS 311 Fall 2024

Thoughts on Assignment 2
Iterators

Member functions begin and end return iterators.

▪ These can be pointers. Do not write a separate iterator class.

▪ Function begin returns an iterator to the first array item. You
already have a pointer to the first array item (think …); use it.

▪ Function end returns an iterator to just past the last array item. Add
a number to the return value of begin (what number?).

 … begin()

 { return …; }

 …

 … end()

 { return begin() + …; }

Pointer type

12

Thoughts on Assignment 2
Access to Internal Data

A const MSArray has non-modifiable data. If a function can give
access to data in modifiable form, then write two versions.

 … operator[](…)

 { … }

 const … operator[](…) const

 { … }

 … begin()

 { … }

 const … begin() const

 { … }

 … end()

 …

2024-09-13 CS 311 Fall 2024

In each pair, the two functions should be
identical, except for (1) the const at the
end of the first line, and (2) what is
returned—or how it is returned.

In this particular case, we will allow
repetition of code.

13

Thoughts on Assignment 2
Writing the Big Five

You will need to write the Big Five in MSArray.

Items in C++ built-in arrays are always default-constructed. We
cannot set their values to anything else in a member initializer.
Therefore, the copy ctor will need a loop* in the function body.

 // Copy ctor

 MSArray(const MSArray & other)

 :_arrayptr(new …),

 …

 { … }

 …

 value_type * _arrayptr;

 …

For the rest, see Invisible Functions II, and do what it says!

2024-09-13 CS 311 Fall 2024

Initialize array items with
a loop* here.

*Or perhaps one of the
generic algorithms from
the STL? (Hint, hint.)

14

Error Handling

2024-09-13 CS 311 Fall 2024 15

2024-09-13 CS 311 Fall 2024

Error Handling
Error Conditions [1/2]

An error condition (often error) is a condition occurring during
runtime that cannot be handled by the normal flow of execution.

An error condition is not the same as a bug in the code.

▪ We are not referring to compilation errors.

▪ Some error conditions are caused by bugs, but our discussion of
error handling will focus on properly written code.

An error condition does not mean the user did something wrong.

▪ Some error conditions are caused by user mistakes.

Example

▪ A function copyFile opens a file, reads its contents, and writes
them to another file.

▪ copyFile is called to read a file that is accessed via a network.

▪ Halfway through reading the file, the network goes down.

▪ It is now impossible to read the file. The normal flow of execution
cannot handle this situation. We have an error condition.

16

Error Handling
Error Conditions [2/2]

How do we deal with possible error conditions?

Sometimes we can prevent error conditions:

▪ Write a precondition that requires the caller to
keep a certain problem from happening.

▪ Example. Insisting on a non-zero parameter,
to prevent a division-by-zero error condition.

Sometimes we can contain error conditions,
by handling them ourselves:

▪ If something is not right, then deal with it.

▪ Example. A fast algorithm needs more memory
than we have; we use a slow method instead.

But sometimes neither of these two is feasible.

Then we must signal the client code.

▪ Signal the client code when the function is
unable to fulfill its postconditions.

▪ Example. The earlier file-reading troubles.

2024-09-13 CS 311 Fall 2024

Handle a possible
error condition
before the function.

Handle a possible
error condition
in the function.

Handle a possible
error condition
after the function.

17

Error Handling
Preview of Goals and Guarantees

When client code might need to be
informed of an error condition,
we may have these three goals:

▪ Error conditions must not wreck our
program. It must continue running,

and later end properly. Objects must
be usable. Resources must not leak.

▪ Even better, it would be good if each

operation we attempt either
completes successfully, or, if there is

an error condition, has no effect.

▪ But it would be really great if we
never need to inform client code of

errors at all.

Later in the class, we will formalize
these as safety guarantees.

The first goal is the fundamental
standard that all code must meet.

We call it the Basic Guarantee.

The second is preferred, although

sometimes not feasible. We call it
the Strong Guarantee.

The third is often wishful thinking.
Sometimes we simply must inform

client code of an error condition.

But in special cases—often involving
finishing something—we do require

this standard. We call it the No-
Throw Guarantee (some call it the

No-Fail Guarantee).

2024-09-13 CS 311 Fall 2024 18

2024-09-13 CS 311 Fall 2024

Error Handling
Signaling the Client Code [1/2]

When we cannot prevent or contain an error condition, then we
must signal the client code. How can we do this?

Method 1. Return an error code.

int c = getc(myFile);

if (c == EOF)

 printf("End of file\n");

Method 2. Set a flag to be checked by a separate error-checking
function.

char c;

myFileStream >> c;

if (myFileStream.eof())

 cout << "End of file" << endl;

The old C-language I/O
library uses this method.

C++ file streams default
to using this method.

19

2024-09-13 CS 311 Fall 2024

Error Handling
Signaling the Client Code [2/2]

Return codes and separate error-checking functions are acceptable
methods for flagging error conditions, but they have downsides.

▪ They can be difficult to use in places where a value cannot be
returned, or an error condition cannot be checked for: constructors,
in the middle of an expression, etc.

▪ They can lead to complicated code.

Because of these issues, another method was developed.

Method 3. Throw an exception.

Exceptions are available in many programming languages: C++,
Java, Python, JavaScript, etc. They are associated with OOP.

In our next topic, we will look at exceptions in C++.

20

2024-09-13 CS 311 Fall 2024

Error Handling
Summary

An error condition (often error) is a condition occurring during
runtime that cannot be handled by the normal flow of execution.

▪ Not necessarily a bug or a user mistake.

▪ Example: Could not read file.

before

during

after

Three (and only three) ways
to deal with a possible error

condition in a function:

Prevention
Client code must prevent
the error (precondition).

Containment
Fix the problem inside the
function.

We like
these two,
but they
might not
be feasible

At least three ways to
signal an error condition

to client code:

Return an error code

Set a flag, checked by
a separate function

Throw an exceptionSignal the Client Code
Idea: When we cannot
fulfill our postconditions.

21

Using Exceptions

2024-09-13 CS 311 Fall 2024 22

Using Exceptions
Exceptions & Catching — The Idea

Exception: an object that is thrown to signal an error condition.

▪ new throws std::bad_alloc or a derived class, if allocation fails.

To handle an exception, catch it using try … catch.

#include <new> // for std::bad_alloc

Foo * p;

bool success = true;

try {

 p = new Foo;

}

catch (std::bad_alloc & e) {

 success = false;

 cerr << "Allocation failed: " << e.what() << endl;

}

2024-09-13 CS 311 Fall 2024

e is the exception.

Standard exception types
have a member function
what. It returns string.

Catch exceptions
by reference.

catch gets an exception
that is thrown inside the
corresponding try-block,
if it has the proper type.

23

Using Exceptions
Exceptions & Catching — What is Caught? [1/4]

Under what circumstances is a thrown exception caught?

If it is caught, then where in the code is it caught?

How It Works

▪ When an exception is thrown inside a try-block, control immediately
passes to the catch-block that is associated with the smallest
enclosing try-block that catches the proper type. Derived classes
are handled as usual.

▪ In all other circumstances, a catch-block is not executed.

▪ An uncaught exception terminates the program.

That’s it! Exception handling is not complicated—even if some of
the examples we cover make it seem complicated.

2024-09-13 CS 311 Fall 2024 24

Using Exceptions
Exceptions & Catching — What is Caught? [2/4]

A catch only gets an exception that is:

▪ Thrown inside the corresponding try-block.

▪ Of an appropriate type.

Once an exception is thrown, the try-block is exited.

If no exception is thrown, the catch-block is not executed.

Foo * p1, p2;

p1 = new Foo;

try {

 p2 = new Foo;

 myFunc(p2);

}

catch (std::bad_alloc & e) {

 [exception-handling code goes here]

}

2024-09-13 CS 311 Fall 2024

The catch-block below will not catch any
exception thrown by this statement.

If the new throws, then this function call is not made.

If this function throws an exception that is
not std::bad_alloc or a derived class, then
the catch-block below is not executed.

25

Using Exceptions
Exceptions & Catching — What is Caught? [3/4]

catch gets exceptions of the proper type that are thrown inside
the corresponding try.

This includes an exception thrown in a called function, if it is not
caught inside that function—that is, if it escapes the function.

void myFunc()

{

 globalP1 = new Foo;

 globalFlag = true;

 try {

 globalP2 = new Foo;

 }

 catch (std::bad_alloc & e) {

 globalFlag = false;

 }

2024-09-13 CS 311 Fall 2024

Function main would be able to catch an
exception thrown by this statement …

… but not a std::bad_alloc
thrown by this statement.

26

Using Exceptions
Exceptions & Catching — What is Caught? [4/4]

Exceptions can propagate out of nested function calls.

Catching by reference will catch exceptions of derived types.

void xx(); // May throw std::bad_alloc

void yy()

{ xx(); }

void zz()

{

 try {

 yy();

 }

 catch (std::exception & e) {

 …

2024-09-13 CS 311 Fall 2024

When function zz is called, if
function xx throws
std::bad_alloc, then the
exception will be caught here.

Because we catch by reference,
derived classes of std::exception
will be caught.

All standard exception classes,
including std::bad_alloc, are
derived from std::exception.

27

2024-09-13 CS 311 Fall 2024

Using Exceptions
Exceptions & Catching — What Throws

The following do not throw:

▪ Built-in operations, other than new, on built-in types.

▪ Including operator[].

▪ Deallocation done by the built-in version of delete.

▪ Note. delete calls destructors, which conceivably might throw—but

should not, as we will see.

▪ C++ Standard I/O Libraries (default behavior).

The following can throw:

▪ new may throw std::bad_alloc or a derived class (default
behavior).

▪ A function that (1) calls a function that throws, and (2) does not
catch the exception, will throw.

▪ Functions written by others may throw. See their documentation.

▪ Lastly, throw always throws. See the next subtopic.

28

Using Exceptions
Throwing [1/2]

We can throw our own exceptions, using throw.

class CC {

public:

 int & operator[](std::size_t ix)

 // May throw std::out_of_range

 {

 if (ix >= _arrsize)

 throw std::out_of_range("CC::op[]: bad ix");

 return _arr[ix];

 }

private:

 int * _arr;

 std::size_t _arrsize;

2024-09-13 CS 311 Fall 2024

The syntax of throw is just like
the syntax of return.

We do not do
this very much!

29

2024-09-13 CS 311 Fall 2024

Using Exceptions
Throwing [2/2]

When throwing your own exception—which you will not do very
much!—use or derive from one of the standard exception types.
Standard exception types are set up to allow for derived classes;
in particular, they all have virtual destructors.

Standard exception types have a string member, for a human-
readable message. This is a ctor parameter. Access it via the
what() member function.

30

Using Exceptions
Catch All & Re-Throw

Use catch(...) to catch all exceptions.

Inside a catch-block, “throw;” will re-throw the same exception.

These two are used together, to ensure that clean-up gets done.

try {

 myFunc3();

}

catch (...) {

 doNecessaryCleanUp();

 throw;

}

Now we know two ways to ensure that clean-up is done before we
leave: (1) RAII, (2) catch all & re-throw.

2024-09-13 CS 311 Fall 2024

This is not my indication that
something is missing. The code
actually contains three dots.

Catch all & re-throw is used in C++

similarly to the way “finally” is
used in some other programming
languages (e.g., Java, Python).

31

2024-09-13 CS 311 Fall 2024

Using Exceptions
Exceptions, Dctors, noexcept [1/2]

Fact 1. An automatic object’s dctor is called
when it goes out of scope, even if this is
due to an exception.

Fact 2. If an exception is thrown, and one
of the destructors called before it is caught
also throws, then the program terminates.

Put these two facts together, and we conclude:

Destructors should not throw.

The above is a technical argument based on the specification of
C++. From a more philosophical point of view, finishing-up
operations—like destructors—generally should not throw.

Dctors are only called for
fully constructed

objects. If a ctor throws,
then the dctor for that

object will not be called.

It is okay for
constructors

to throw.

32

2024-09-13 CS 311 Fall 2024

Using Exceptions
Exceptions, Dctors, noexcept [2/2]

Because dctors should not throw, they are generally marked
noexcept implicitly, unless otherwise specified.

If a noexcept function throws, then the program
terminates.

We can make a destructor that is not noexcept using
“noexcept(false)”. However, this is EVIL. 

class Foo {

public:

 ~Foo() noexcept(false)

 {

 …

 }

 …

EVIL!

Recall: noexcept
is a promise that

a function will
not throw.

33

2024-09-13 CS 311 Fall 2024

Using Exceptions
CODE

TO DO

▪ Write a function allocate2 that:

▪ Attempts to allocate two dynamic objects.

▪ Returns pointers to these objects, using reference parameters.

▪ If either allocation fails, throws std::bad_alloc.

▪ Has no memory leaks.

▪ Look at example code showing how RAII can simplify these
situations.

Done. See allocate2.cpp.

See allocate2_raii.cpp.

34

Using Exceptions
Final Thoughts [1/2]

When to Do Things

▪ Catch when you can handle an error condition that may be signaled
by some function you call.

▪ Throw when your function is unable to fulfill its postconditions and
must signal an error condition.

▪ Catch all & re-throw when you call a function that may throw,
you cannot handle the error, but you do need to do some clean-up
before your function exits.

Typically we do not write more than one of these. If someone
writes a throw, the catch is typically written by someone else.

2024-09-13 CS 311 Fall 2024

If my code encounters an error
condition it cannot handle, it

throws an exception.

My code can handle these
error conditions, so it catches

the exception.

35

Using Exceptions
Final Thoughts [2/2]

Some people do not like exceptions. Some of these people are very
vocal about their dislike. But I think that some of them dislike
exceptions for the wrong reasons.

A bad reason to dislike exceptions is that they require lots of work.

▪ Dealing with error conditions is work. Writing software that works is
work. Exceptions are one tool we can use to achieve this goal.

▪ Handling exceptions properly is hard work because writing correct
software is hard work.

What might be a good reason to dislike exceptions is that they add
hidden execution paths. But remember that other error-handling
methods have their own downsides—which is why exceptions
were invented.

2024-09-13 CS 311 Fall 2024 36

	Slide 1: Thoughts on Assignment 2 Error Handling Using Exceptions
	Slide 2: Unit Overview Advanced C++ & Software Engineering Concepts
	Slide 3
	Slide 4: Review Software Engineering Concepts: Invariants
	Slide 5: Review Software Engineering Concepts: Invariants — TRY IT (Exercise)
	Slide 6: Review Software Engineering Concepts: Invariants — TRY IT (Answers)
	Slide 7
	Slide 8: Thoughts on Assignment 2 Overview of Ideas
	Slide 9: Thoughts on Assignment 2 Templates [1/2]
	Slide 10: Thoughts on Assignment 2 Templates [2/2]
	Slide 11: Thoughts on Assignment 2 Documentation
	Slide 12: Thoughts on Assignment 2 Iterators
	Slide 13: Thoughts on Assignment 2 Access to Internal Data
	Slide 14: Thoughts on Assignment 2 Writing the Big Five
	Slide 15
	Slide 16: Error Handling Error Conditions [1/2]
	Slide 17: Error Handling Error Conditions [2/2]
	Slide 18: Error Handling Preview of Goals and Guarantees
	Slide 19: Error Handling Signaling the Client Code [1/2]
	Slide 20: Error Handling Signaling the Client Code [2/2]
	Slide 21: Error Handling Summary
	Slide 22
	Slide 23: Using Exceptions Exceptions & Catching — The Idea
	Slide 24: Using Exceptions Exceptions & Catching — What is Caught? [1/4]
	Slide 25: Using Exceptions Exceptions & Catching — What is Caught? [2/4]
	Slide 26: Using Exceptions Exceptions & Catching — What is Caught? [3/4]
	Slide 27: Using Exceptions Exceptions & Catching — What is Caught? [4/4]
	Slide 28: Using Exceptions Exceptions & Catching — What Throws
	Slide 29: Using Exceptions Throwing [1/2]
	Slide 30: Using Exceptions Throwing [2/2]
	Slide 31: Using Exceptions Catch All & Re-Throw
	Slide 32: Using Exceptions Exceptions, Dctors, noexcept [1/2]
	Slide 33: Using Exceptions Exceptions, Dctors, noexcept [2/2]
	Slide 34: Using Exceptions CODE
	Slide 35: Using Exceptions Final Thoughts [1/2]
	Slide 36: Using Exceptions Final Thoughts [2/2]

