
Containers & Iterators
Software Engineering Concepts: Invariants
Invisible Functions II

CS 311 Data Structures and Algorithms

Lecture Slides

Wednesday, September 11, 2024

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2005–2024 Glenn G. Chappell

Some material contributed by Chris Hartman

continued

Unit Overview
Advanced C++ & Software Engineering Concepts

Topics: Advanced C++

▪ Expressions

▪ Parameter passing I

▪ Operator overloading

▪ Example class

▪ Parameter passing II

▪ Invisible functions I

▪ Managing resources in a class

▪ Containers & iterators

▪ Invisible functions II

▪ Error handling

▪ Using exceptions

Topics: S.E. Concepts

▪ Abstraction

▪ Assertions

▪ Testing

▪ Invariants

2024-09-11 CS 311 Fall 2024

(part)

2

Review

2024-09-11 CS 311 Fall 2024 3

Review
Managing Resources in a Class

Some resources need clean-up when we are done with them.

▪ Examples: dynamic objects or arrays, files to be closed, etc.

▪ We acquire a resource. Later, we release it.

▪ If we never release: there is a resource leak.

Own a resource = be responsible for releasing.

Prevent resource leaks with RAII.

▪ A resource is owned by an object.

▪ Therefore, its destructor releases─if this
has not been done yet.

▪ Define, =delete, or =default each of the
Big Five in an RAII class.

2024-09-11 CS 311 Fall 2024

Ownership =
Responsibility

for Releasing

RAII =
An Object Owns

and, therefore, its
destructor releases

4

2024-09-11 CS 311 Fall 2024

Review
Containers & Iterators [1/3]

A container is a data structure that can hold multiple items,
usually all of the same type.

A generic container is a container that can hold items of a client-
specified type. One kind is a C++ built-in array. Others are in
the C++ Standard Template Library (STL): std::vector,
std::list, std::map, etc.

All the STL containers have interfaces that involve iterators.

5

Review
Containers & Iterators [2/3]

An iterator refers to an item in a container—or acts like it does.
An iterator does not own the item it refers to.

vector<int>::iterator iter1 = begin(vv)+3;

vector<int>::const_iterator citer;

An iterator may be a wrapper, to make data look like a container.

#include <iterator>

std::ostream_iterator<int> coolIter(std::cout, "\n");

*coolIter++ = 3; // Same effect as next line

std::cout << 3 << "\n";

2024-09-11 CS 311 Fall 2024

iter1

Cannot be used to modify
the item it refers to.

I practice, I would
use auto here.

6

Review
Containers & Iterators [3/3]

To specify a range, we use two iterators:

▪ An iterator to the first item in the range.

▪ An iterator to just past the last item in the range.

sort(begin(v)+2, begin(v)+6); // Sort v[2]..v[5]

sort(begin(v), end(v)); // Sort all of v

2024-09-11 CS 311 Fall 2024

Specified range
is entire container

Specified range

7

Containers & Iterators

2024-09-11 CS 311 Fall 2024

continued

8

Containers & Iterators
Generic Algorithms [1/4]

The STL includes a number of generic algorithms, which can
operate on arbitrary datasets. Most of these make use of
iterators. All are defined in the header <algorithm>.

For example, algorithm std::copy copies the values in a range to

another range.

#include <algorithm>

using std::copy;

vector<int> v(20);

vector<int> v2(20);

copy(begin(v), end(v), begin(v2)); // Copy v to v2.

copy(begin(v), end(v), coolIter);

 // Print the items in v, one on each line!

2024-09-11 CS 311 Fall 2024 9

Containers & Iterators
Generic Algorithms [2/4]

Most of the STL generic algorithms take ranges. A range is
specified using 2 iterators, in the way we have discussed.

▪ An iterator to the first item in the range.

▪ An iterator to just past the last item in the range.

std::copy has three parameters: 2 iterators specifying the range

to read from, and an iterator to the first item in the range to
write to.

copy(begin(v), end(v), begin(v2));

The second range must be large enough to hold all the items from
the first range.

2024-09-11 CS 311 Fall 2024

Range to
read from

Start of range
to write to

10

Containers & Iterators
Generic Algorithms [3/4]

In addition to std::copy, be familiar with these STL algorithms:

▪ std::equal: check if two ranges have the same size and hold
the same values.

bool isEq = equal(begin(v), end(v), begin(v2), end(v2));

 // Another version takes 3 params, like std::copy;

 // that one assumes the ranges are the same size

▪ std::sort: reorder the values in a range in ascending order.

sort(begin(v), end(v)); // Rearrange items in v

▪ std::fill: set all items in a range to a given value.

fill(begin(v), end(v), 6); // Set every item in v to 6

2024-09-11 CS 311 Fall 2024 11

Containers & Iterators
Generic Algorithms [4/4]

TO DO

▪ Run some code using iterators and STL generic algorithms.

2024-09-11 CS 311 Fall 2024

See iterators.cpp.

12

Software Engineering Concepts:
Invariants

2024-09-11 CS 311 Fall 2024 13

2024-09-11 CS 311 Fall 2024

Software Engineering Concepts: Invariants
Basics [1/2]

An invariant is a condition that is always true at a particular point in a
computation. Typically, it says something about the values of variables.

if (ix < 0)

{

 flagError("Index too small");

 return;

}

// Invariant: ix >= 0

if (ix >= myVec.size())

{

 flagError("Index too large");

 return;

}

// Invariant: ix >= 0 && ix < myVec.size()

myItem = myVec[ix];

Suppose myVec is a vector<int>.

We wish to set (non-const) int
variable myItem equal to myVec[ix],

if possible.

Q. When would it be impossible?

A. When ix is out of range, that is,
when it is not a valid index for myVec.

14

Software Engineering Concepts: Invariants
Basics [2/2]

When we make assertions, the things we assert are invariants.

assert(ix >= 0 && ix < myVec.size());

myItem = myVec[ix];

But there may also be invariants that we cannot write assertions
for, since they cannot be expressed in code.

// Invariant: pp points to memory allocated with new [],

// owned by *this.

delete [] pp;

2024-09-11 CS 311 Fall 2024

Invariant

In C++ there is no way
to test for ownership or
the method used to
allocate memory.

15

2024-09-11 CS 311 Fall 2024

Software Engineering Concepts: Invariants
Pre & Post [1/2]

We are particularly interested in two special kinds of invariants:
preconditions and postconditions.

A precondition is an invariant at the beginning of a function.

▪ The responsibility for making sure the precondition is true rests with
the calling code (that is, the client).

▪ In practice, a precondition states what must be true for the
function to execute properly.

A postcondition is an invariant at the end of a function.

▪ It tells what services the function has performed for the client code.

▪ The responsibility for making sure the postcondition is true rests
with the function itself.

▪ In practice, a postcondition describes the function’s effect using
statements about values.

A function offers an operation contract to its caller: “Caller, if
you fulfill the preconditions, then I will fulfill the postconditions.”

16

2024-09-11 CS 311 Fall 2024

Software Engineering Concepts: Invariants
Pre & Post [2/2]

Example

▪ Write reasonable pre- and postconditions for the following function,
which is supposed to compute the average speed of an object,
given the distance it travels and the time elapsed.

// avgSpeed

// Pre: time != 0.

// Post: return == dist/time, where the computation is

// done using floating-point division.

double avgSpeed(int dist,

 int time)

{

 return double(dist) / double(time);

}

Preconditions:
What must be true for the
function to execute properly?

Postconditions:
Describe the function’s effect
using statements about values.

17

2024-09-11 CS 311 Fall 2024

Software Engineering Concepts: Invariants
Class Invariants [1/2]

For a given class, a class invariant is an invariant that holds for
an object of the class, whenever execution is not inside a
member function.

▪ Class invariants are preconditions for every public member function,
except constructors.

▪ Class invariants are postconditions for every public member
function, except the destructor.

▪ Since we know this, you do not need to list class invariants in the
pre- and postcondition lists of public member functions.

▪ In practice, class invariants are statements about data members
that indicate what it means for an object to be valid or usable.

Constructor DestructorMember Func. Member Func.

Class invariants are true
here

18

2024-09-11 CS 311 Fall 2024

Software Engineering Concepts: Invariants
Class Invariants [2/2]

Example

▪ Write reasonable class invariants for the following class.

// class Date

// Invariants:

// 1 <= _mo <= 12.

// 1 <= _day <= #days in month given by _mo.

class Date {

public:

 [Lots of code goes here]

private:

 int _mo; // Month 1..12

 int _day; // Day 1..#days in month given by _mo

}; // End class Date

Class invariants:
statements about data members that
indicate what it means for an object to be
valid or usable.

19

2024-09-11 CS 311 Fall 2024

Software Engineering Concepts: Invariants
Documentation

We have seen preconditions and class invariants before. In files
like the TimeOfDay package, and in Assignment 1, we typically
made two kinds of assertions.

▪ Assertions about the parameters of a function.

▪ Assertions about the data members of an object.

Both are preconditions. The latter are usually class invariants.

We will require both preconditions and class invariants to be
documented in comments. Class invariants are preconditions of
all member functions except ctors, so we do not need to restate
them as preconditions before every function.

TO DO

▪ Add comments indicating preconditions
and class invariants to the TimeOfDay
package.

Done. See timeofday.hpp

& timeofday.cpp.

20

Invisible Functions II

2024-09-11 CS 311 Fall 2024 21

Invisible Functions II
The Big Five [1/2]

Recall: the Big Five are the following.

~Dog();

Dog(const Dog & other);

Dog & operator=(const Dog & rhs);

Dog(Dog && other);

Dog & operator=(Dog && rhs);

All five are sometimes automatically generated.

2024-09-11 CS 311 Fall 2024

 Dctor

 Copy ctor

 Copy assignment operator

 Move ctor

 Move assignment operator

22

Invisible Functions II
The Big Five [2/2]

The Rule of Five: If you define one of the Big Five, then consider
whether to define or =delete each of the others. If, for one of
these functions, you decide not to, then =default that one.

This typically happens when an object directly manages a resource.

We much prefer writing none of them. This is our usual way of
operating.

Thus, we have the Rule of Zero: Where possible, do not explicitly
define any of the Big Five. Resources should be managed by
data members that are objects of RAII classes.

But sometimes we need to write one of those RAII classes. And
then we need to write the Big Five for that class.

2024-09-11 CS 311 Fall 2024 23

Invisible Functions II
Copy vs. Move [1/3]

In order to write copy & move operations, it can be helpful to
consider the difference between them.

Suppose we have an array object. Typically, this will have a pointer
to a block of memory containing the array data, along with an
integer whose value is the size of the array.

Now we want to create a new object just like it.

▪ If we are not allowed to alter the original, we are doing a copy.

▪ If we are allowed to alter the original, we are doing a move.

2024-09-11 CS 311 Fall 2024

3 5 3 51 2

6

size pointer

24

Invisible Functions II
Copy vs. Move [2/3]

To do a copy, we first create our new object, set its size member,
and allocate a memory block of the correct size.

Then we copy each array item to the new memory.

If the array is large, then this can be time-consuming. If the array
items are complicated, then it is possible for an item to copy
unsuccessfully, and we will have to deal with the error.

2024-09-11 CS 311 Fall 2024

3 5 3 51 2

6 6

3 5 3 51 2

6

3 5 3 51 2

6

Original New

25

Invisible Functions II
Copy vs. Move [3/3]

A move can use a different strategy. First, set each data member
of the new object to the corresponding member in the original.

The new object is finished. But leaving the original pointing to the
same memory is a problem. So we set the original to a
“nothing” value that can still be correctly destroyed.

And we are done. So a move operation can be both fast and free
from the possibility of errors.

2024-09-11 CS 311 Fall 2024

3 5 3 51 2

6 6Original New

3 5 3 51 2

0 6
Null

pointer

26

Invisible Functions II
Writing Them — Assumptions

We consider how to write the Big Five for a class under the
following assumptions.

▪ Every data member has a built-in type: things like int,
std::size_t, double, and any pointer type—including (Foo *)
when Foo is a class we wrote.

▪ Objects of our class will be destructible, copyable, and moveable

▪ So we will not =delete any of the Big Five.

▪ There are no inheritance hierarchies involved.

▪ So there are no virtual functions and no base-class initializers.

On the following slides, we will discuss one way to write the Big
Five for a class Foo with data members _a and _b.

2024-09-11 CS 311 Fall 2024 27

Invisible Functions II
Writing Them — Dctor & Copy Ctor

Write the dctor and the copy ctor however we need to.

▪ The dctor must release any owned resources.

▪ The copy ctor needs to make a real copy.

▪ If some member is a pointer referencing a dynamic array, then do not

copy the pointer. Instead, allocate a new array and then copy from old

array to new array.

class Foo {

public:

 // Dctor

 ~Foo()

 {

 …

 }

2024-09-11 CS 311 Fall 2024

// Copy ctor

Foo(const Foo & other)

 :_a(…),

_b(…)

{

…

}

28

Invisible Functions II
Writing Them — Move Ctor

A move ctor makes an object with the same value as its parameter
(other). It may alter other. But other still needs to be destructible.

Procedure

▪ Construct each data member from the corresponding member of other.

▪ Set other to a value that can be destroyed—without messing up our object.

A move ctor should be marked noexcept, which promises that it throws no
exceptions. This allows optimizations that can improve efficiency.

 // Move ctor

 Foo(Foo && other) noexcept

 :_a(other._a),

 _b(other._b)

 {

 other._a = …;

other._b = …;

 }

2024-09-11 CS 311 Fall 2024

Set other to a valid value, so its destructor

still works. This value should be one whose
destruction does not mess up our newly
constructed object.

We will discuss
exceptions on
another day

29

Invisible Functions II
Writing Them — Swap

A useful operation is a swap member function.

▪ Take another object of the same type.

▪ Swap the values of this object and the other object.

Swap can often be implemented very efficiently: call Standard
Library function swap (<utility>) to swap each data member
with the corresponding data member of the other object.

Generally, we should mark a swap member function as noexcept.

This member function will sometimes be private.

private:

 void mswap(Foo & other) noexcept

 {

 swap(_a, other._a);

 swap(_b, other._b);

 }

2024-09-11 CS 311 Fall 2024

Traditionally, this member function is
named swap. Here, I call it mswap (for

“member swap”) to avoid confusion
with std::swap. But if it is private, then

you can call it whatever you want.

30

Invisible Functions II
Writing Them — Copy & Move Assignment

Once we can swap, the assignment operators are easy to write.

▪ Copy assignment swaps with a copy of its parameter.

▪ Move assignment swaps with its parameter. It should be marked noexcept.

 Foo & operator=(const Foo & rhs) // Copy assignment

 {

 auto rhs_copy = rhs;

 mswap(rhs_copy);

 return *this;

 }

 Foo & operator=(Foo && rhs) noexcept // Move assignment

 {

 mswap(rhs);

 return *this;

 }

2024-09-11 CS 311 Fall 2024

An assignment operator should
always return the current object.

This is one way to write assignment
operators. It is easy, and it works.

For some classes, there may be better
ways to write these—but we will not

need to worry about that this semester.

31

	Slide 1: Containers & Iterators Software Engineering Concepts: Invariants Invisible Functions II
	Slide 2: Unit Overview Advanced C++ & Software Engineering Concepts
	Slide 3
	Slide 4: Review Managing Resources in a Class
	Slide 5: Review Containers & Iterators [1/3]
	Slide 6: Review Containers & Iterators [2/3]
	Slide 7: Review Containers & Iterators [3/3]
	Slide 8
	Slide 9: Containers & Iterators Generic Algorithms [1/4]
	Slide 10: Containers & Iterators Generic Algorithms [2/4]
	Slide 11: Containers & Iterators Generic Algorithms [3/4]
	Slide 12: Containers & Iterators Generic Algorithms [4/4]
	Slide 13
	Slide 14: Software Engineering Concepts: Invariants Basics [1/2]
	Slide 15: Software Engineering Concepts: Invariants Basics [2/2]
	Slide 16: Software Engineering Concepts: Invariants Pre & Post [1/2]
	Slide 17: Software Engineering Concepts: Invariants Pre & Post [2/2]
	Slide 18: Software Engineering Concepts: Invariants Class Invariants [1/2]
	Slide 19: Software Engineering Concepts: Invariants Class Invariants [2/2]
	Slide 20: Software Engineering Concepts: Invariants Documentation
	Slide 21
	Slide 22: Invisible Functions II The Big Five [1/2]
	Slide 23: Invisible Functions II The Big Five [2/2]
	Slide 24: Invisible Functions II Copy vs. Move [1/3]
	Slide 25: Invisible Functions II Copy vs. Move [2/3]
	Slide 26: Invisible Functions II Copy vs. Move [3/3]
	Slide 27: Invisible Functions II Writing Them — Assumptions
	Slide 28: Invisible Functions II Writing Them — Dctor & Copy Ctor
	Slide 29: Invisible Functions II Writing Them — Move Ctor
	Slide 30: Invisible Functions II Writing Them — Swap
	Slide 31: Invisible Functions II Writing Them — Copy & Move Assignment

