
Managing Resources in a Class
Containers & Iterators

CS 311 Data Structures and Algorithms

Lecture Slides

Monday, September 9, 2024

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2005–2024 Glenn G. Chappell

Some material contributed by Chris Hartman

continued

Unit Overview
Advanced C++ & Software Engineering Concepts

Topics: Advanced C++

▪ Expressions

▪ Parameter passing I

▪ Operator overloading

▪ Example class

▪ Parameter passing II

▪ Invisible functions I

▪ Managing resources in a class

▪ Containers & iterators

▪ Invisible functions II

▪ Error handling

▪ Using exceptions

Topics: S.E. Concepts

▪ Abstraction

▪ Assertions

▪ Testing

▪ Invariants



2024-09-09 CS 311 Fall 2024













(part)





2

Review

2024-09-09 CS 311 Fall 2024 3

Review
Parameter Passing I/II [1/2]

Four methods for passing a parameter or returning a value are
used in C++:

*Rvalues prefer to be passed by Rvalue reference.

2024-09-09 CS 311 Fall 2024

By Value

U f(T x)

By Reference

U & f(T & x)

By Reference-to
Const

const U & f(const T & x)

By Rvalue
Reference

U && f(T && x)

Makes a copy YES  NO ☺ NO ☺ NO ☺

Allows for
polymorphism

NO  YES ☺ YES ☺ YES ☺

Allows implicit
type conversions

YES ☺ NO  YES ☺ YES ☺

Allows passing
of:

Any copyable
value ☺

Non-const
Lvalues ?

Any value* ☺ Non-const
Rvalues*

4

Review
Parameter Passing I/II [2/2]

We do not pass by Rvalue reference very often.

When we do so, we might write two versions of a function.

void g(Foo && p); // Gets non-const Rvalues

void g(const Foo & p); // Gets all other values

Since it is okay to “mess up” a non-const Rvalue, the first version
can often be written to be faster. But if it cannot, then there is
no point in writing it at all.

2024-09-09 CS 311 Fall 2024 5

Review
Invisible Functions I [1/2]

A C++ compiler may write a number of member functions for us.
Here are six important ones:

class Dog {

public:

 Dog();

 ~Dog();

 Dog(const Dog & other);

 Dog & operator=(const Dog & rhs);

 Dog(Dog && other);

 Dog & operator=(Dog && rhs);

For each function, the automatically generated version calls the
corresponding member function for each data member.

2024-09-09 CS 311 Fall 2024

 Default ctor

 Dctor

 Copy ctor

 Copy assignment operator

 Move ctor

 Move assignment operator

The Big Five

6

Review
Invisible Functions I [2/2]

Two special options.

▪ Force automatic generation. Dog(Dog && other) = default;

▪ Eliminate the function. Dog(Dog && other) = delete;

The default ctor is automatically generated when we declare no
ctors.

For the Big Five, we covered the rules for when they are
automatically generated. But you do not need to know these;
just follow the Rule of Five.

The Rule of Five: If you define one of the Big Five, then consider
whether to define or =delete each of the others. If, for one of
these functions, you decide not to, then =default that one.

Typically, this happens when an object directly manages some
resource—like dynamically allocated memory—that will need to
be cleaned up.

2024-09-09 CS 311 Fall 2024 7

Review
Managing Resources in a Class [1/2]

Exceptions may cause a function to exit, even where there is no
return. Destructors of automatic objects are still called.

Dynamically allocated memory & objects need clean-up when
we are done with them. If we never deallocate, then there is a
memory leak.

To own memory/object = to be responsible
for releasing (deallocating).

Prevent memory leaks with RAII.

▪ Memory/object is owned by an object.

▪ Therefore, its destructor releases─if this
has not been done yet.

▪ Define, =delete, or =default each of the
Big Five in an RAII class.

2024-09-09 CS 311 Fall 2024

Ownership =
Responsibility

for Releasing

RAII =
An Object Owns

and, therefore, its
destructor releases

8

2024-09-09 CS 311 Fall 2024

Review
Managing Resources in a Class [2/2]

TO DO (last time)

▪ Write class IntArray in header intarray.hpp.

▪ Constructor from size (explicit).

▪ Destructor.

▪ Bracket operator (const & non-const).

▪ Member types size_type, value_type.

▪ Rewrite function scaryFn to use IntArray.

We cover this shortly.

Done. See intarray.hpp.

For a program that uses
IntArray, see

intarray_main.cpp.

9

Managing Resources in a Class

2024-09-09 CS 311 Fall 2024

continued

10

Managing Resources in a Class
An RAII Class — Usage in a Function

Original scaryFn

void scaryFn(size_t size)

{

 int * buffer = new int[size];

 if (func1(buffer))

 {

 delete [] buffer;

 return;

 }

 if (func2(buffer))

 {

 delete [] buffer;

 return;

 }

 func3(buffer);

 delete [] buffer;

}

New scaryFn, using IntArray

void scaryFn(size_t size)

{

 IntArray buffer(size);

 if (func1(&buffer[0]))

 return;

 if (func2(buffer))

 return;

 func3(&buffer[0]);

}

2024-09-09 CS 311 Fall 2024

This line supposes that func2
has been rewritten to take an
IntArray parameter.

The parameter cannot be passed
by value, because IntArray has
no copy/move ctors.

11

Managing Resources in a Class
An RAII Class — Usage in a Class

Class with an Array Member

class HasArray {

public:

 HasArray(size_t size)

 :_theArray(new int[size])

 {}

 ~HasArray()

 { delete [] _theArray; }

 void out(size_t index) const

 { cout << _theArray[index]; }

private:

 int * _theArray;

};

Same idea, using IntArray

class HasArray {

public:

 HasArray(size_t size)

 :_theArray(size)

 {}

 // Auto-generated dctor

 void out(size_t index) const

 { cout << _theArray[index]; }

private:

 IntArray _theArray;

};

2024-09-09 CS 311 Fall 2024

… …

Same

12

2024-09-09 CS 311 Fall 2024

Managing Resources in a Class
Generalizing Ownership [1/3]

The concepts of ownership and RAII can be applied to resources
other than dynamically allocated memory.

▪ An open file (who is responsible for closing it?)

▪ Network connections.

▪ Or anything else that needs clean-up when we are done with it.

Acquire a resource: get access and control.

Release a resource: clean it up and relinquish control.

So:

▪ If a resource is never released, then we have a resource leak.

▪ The owner of a resource is responsible for releasing it.

▪ RAII: an object owns a resource; so its destructor releases.

▪ Direct resource ownership is the usual reason to define/=delete the
Big Five.

13

2024-09-09 CS 311 Fall 2024

Managing Resources in a Class
Generalizing Ownership [2/3]

RAII is used by standard stream classes, to manage open files.

bool handleInput(const std::string & filename)

{

 std::ifstream inFile(filename);

 if (!inFile) return false;

 for (int i = 0; i < 10; ++i)

 {

 int inValue;

 inFile >> inValue;

 if (!inFile) return false;

 processInput(inValue);

 }

 return true;

}

Q. Where is the file closed?

A. In the dctor of inFile.

Here or here …

… or possibly here, if processInput
may throw an exception.

Strictly speaking, not
here, since this exit is
taken if the file could
not be opened. But if
you guessed this spot,
then your heart is in
the right place. ☺

14

Managing Resources in a Class
Generalizing Ownership [3/3]

Class IntArray is just an exercise. The C++ Standard Library
already includes smarter RAII array class templates
(std::vector, std::array, and std::basic_string), as well
as simpler ownership-only smart-pointer classes
(std::unique_ptr and std::shared_ptr).

However, we can and do apply the ideas of ownership and RAII in
real-world projects.

In situations where no existing resource-management classes fit
our needs, we might need to write one or more, based on the
principles covered here.

2024-09-09 CS 311 Fall 2024 15

Containers & Iterators

2024-09-09 CS 311 Fall 2024 16

2024-09-09 CS 311 Fall 2024

Containers & Iterators
Containers — Generic Containers

A container is a data structure that can hold multiple items,
usually all of the same type.

A generic container is a container that can hold items of a client-
specified type.

One kind of generic container: a C++ built-in array.

MyType myArray[8];

Other generic container types are in the C++ Standard Library.

In particular, the Standard Template Library (STL), contains
templates for many data structures that can hold arbitrary
types, as well as algorithms that can deal with arbitrary types.

17

2024-09-09 CS 311 Fall 2024

Containers & Iterators
Containers — Troubles with C++ Built-In Arrays

STL containers are necessary for many reasons. One is that C++
built-in arrays have very few operations defined on them.

▪ There is no resizing and no “size” member function—no member
functions at all, actually.

▪ There is no copy or assignment. When a built-in array is passed by
value, it decays to a pointer to its first item.

int a[10];

func(a);

func(&a[0]); // Same as above

// func cannot tell the size of the array it receives

18

2024-09-09 CS 311 Fall 2024

Containers & Iterators
Containers — std::vector [1/3]

We would prefer a container type that is first-class.

A type is first-class if it can be tossed around with the ease of something
like int—for example, new values can be created at runtime, they can
be passed to and returned from functions, and they can be stored in
containers).

One generic container found in the STL: std::vector.

▪ vector is a first-class array.

▪ It is declared in the standard header <vector>.

▪ This is a class template, not a class.

vector v1; // DOES NOT COMPILE!

vector<int> v2; // vector of int

19

2024-09-09 CS 311 Fall 2024

Containers & Iterators
Containers — std::vector [2/3]

Like any array, vector has lookup by index:

vector<int> v3(20); // Much like int arr[20];

cout << v3[5] << endl;

v3[19] = 7;

A vector knows how to copy itself:

v3 = v2;

A vector knows its size.

cout << v3.size() << endl;

20

2024-09-09 CS 311 Fall 2024

Containers & Iterators
Containers — std::vector [3/3]

A default-constructed vector has size 0. But there are other ctors.

vector<Blug> v4(20); // Holds 20 items of type Blug;

 // all are default-constructed

vector<double> v5(55, 7.); // Holds 55 doubles, all 7.

And we can change the size of a vector:

v5.push_back(6.1); // Adds new item at end, value 6.1

v5.pop_back(); // Eliminates last item

v5.resize(20); // v5 now has size 20

I call std::vector a smart array.

21

2024-09-09 CS 311 Fall 2024

Containers & Iterators
Containers — Kinds of Data

When we deal with containers, the following broad categories of
data are important:

▪ Random Access

▪ Random-access data can be dealt with in any order.

We can efficiently skip from
one item to any other.

Example: std::vector.

▪ Sequential Access

▪ Sequential-access data is data that can only be dealt with—or

only dealt with efficiently—in a particular order. We begin with
some item, then proceed to the next, etc.

▪ Sequential access data may be
bidirectional, accessible in

both forward and backward

order. Or it may be
forward-only, accessible

only in forward order.

Random
Access

Bidirectional
Sequential
Access

Forward-Only
Sequential
Access

22

2024-09-09 CS 311 Fall 2024

Containers & Iterators
Containers — STL Generic Containers

The STL includes a number of generic containers. Some are
random-access; others are sequential-access.

▪ std::vector

▪ std::basic_string

▪ std::array

▪ std::list

▪ std::forward_list

▪ std::deque

All of these have interfaces that involve iterators.

▪ std::map

▪ std::set

▪ std::unordered_map

▪ std::unordered_set

▪ std::multimap

▪ std::multiset

▪ std::unordered_multimap

▪ std::unordered_multiset

23

2024-09-09 CS 311 Fall 2024

Containers & Iterators
Iterators — Introduction [1/4]

An iterator refers to an item in a container.

vector<int> v(7);

vector<int>::iterator iter1 = begin(v);

An iterator does not own the item it refers to.

Use the dereference operator (*) to access
the item an iterator refers to. The item is available as an Lvalue.

v[0] = 3;

cout << *iter1; // Prints "3"

*iter = 5; // Set v[0] to 5

iter1

auto would be nicer here.

STL containers have
iterator member types.

Global function begin
(<iterator>) calls
member function begin,
which returns an iterator
to the first item in the
container.

24

2024-09-09 CS 311 Fall 2024

Containers & Iterators
Iterators — Introduction [2/4]

STL containers actually have multiple iterator member types.

vector<int>::iterator it;

vector<int>::const_iterator cit;

 // Does not allow modification of referenced item

cout << *it; // Okay

*it = 5; // Okay

cout << *cit; // Okay

*cit = 5; // DOES NOT COMPILE!

25

2024-09-09 CS 311 Fall 2024

Containers & Iterators
Iterators — Introduction [3/4]

Non-owning pointers are iterators for C++ built-in arrays.

int arr[8];

int * p = &arr[2];

*p = 7; // Sets arr[2] to 7

The syntax used for iterators in C++ was based on the syntax for
pointers, which is the same as the the pointer syntax in the C
programming language.

26

2024-09-09 CS 311 Fall 2024

Containers & Iterators
Iterators — Introduction [4/4]

An iterator can be a wrapper around data, to make it look like a
container.

#include <iterator>

using std::ostream_iterator;

std::ostream_iterator<int> coolIter(cout, "\n");

Now the following two lines do the same thing:

cout << 3 << "\n";

*coolIter++ = 3; // Has same effect as previous line

27

2024-09-09 CS 311 Fall 2024

Containers & Iterators
Iterators — Operations [1/3]

Adding to an iterator moves the iterator forward some number of
steps to a new item in the same container.

++iter1;

auto iter2 = iter1 + 4;

Similarly, subtracting moves an iterator backward.

--iter1;

iter2 -= 2;

iter1

iter1 iter2

iter1 iter2

28

2024-09-09 CS 311 Fall 2024

Containers & Iterators
Iterators — Operations [2/3]

Subtract two iterators to the same container, to find the distance
between them.

auto dist = iter2 - iter1; // dist is an integer

Copying an iterator gives a new iterator referring to the same item.

auto iter3 = iter1;

Checking equality of iterators tells
whether they refer to the same spot in the container.

if (iter3 == iter1)

 …

iter1 iter3

29

Containers & Iterators
Iterators — Operations [3/3]

Operations available on an iterator match the underlying data.

▪ Iterators for forward-only
sequential-access data have
the ++ operation. These are
forward iterators.

++forwardIterator;

▪ Iterators for bidirectional
sequential-access data also
have the -- operation. These
are bidirectional iterators.

++bidirectionalIterator;

--bidirectionalIterator;

▪ Iterators for random-access
data have all the iterator
arithmetic operations. These
are random-access iterators.

++randomAccessIter;

--randomAccessIter;

randomAccessIter += 7;

cout << randomAccessIter[5];

std::ptrdiff_t dist =

 raIter2 - raIter1;

2024-09-09 CS 311 Fall 2024

Each boldface term is an
iterator category.

30

Containers & Iterators
Iterators — Specifying Ranges

To specify a range, we use two iterators:

▪ An iterator to the first item in the range.

▪ An iterator to just past the last item in the range.

#include <algorithm>

using std::sort;

sort(begin(v)+2, begin(v)+6); // Sort v[2]..v[5]

sort(begin(v), end(v)); // Sort all of v

2024-09-09 CS 311 Fall 2024

Specified range
is entire container

Specified range

Global function end (<iterator>) calls member
function end, which returns an iterator to just past
the last item in a container.

31

Containers & Iterators
Iterators — Range-Based For-Loop [1/2]

Iterators are fundamental to the range-based for-loop, a flow-
of-control construct introduced in the 2011 C++ Standard.

vector<int> data;

for (auto x : data)

 cout << x << " " << endl;

The above is essentially the same as the following.

for (auto it = begin(data); it != end(data); ++it)

{

 auto x = *it;

 cout << x << " " << endl;

}

2024-09-09 CS 311 Fall 2024

x becomes a copy of each
item in container data.

32

Containers & Iterators
Iterators — Range-Based For-Loop [2/2]

The variable in a range-based for-loop is treated much like a
parameter. The usual parameter-passing methods are available.

We generally use by reference-to-const for containers of objects.

vector<Blug> data2;

for (const auto & x : data2)

 cout << x << endl;

Use by reference to allow alteration
of items in the container.

for (auto & x : data2)

 x = bb;

2024-09-09 CS 311 Fall 2024

Here, x is not a copy.

33

Containers & Iterators
TO BE CONTINUED …

Containers & Iterators will be continued next time.

2024-09-09 CS 311 Fall 2024 34

	Slide 1: Managing Resources in a Class Containers & Iterators
	Slide 2: Unit Overview Advanced C++ & Software Engineering Concepts
	Slide 3
	Slide 4: Review Parameter Passing I/II [1/2]
	Slide 5: Review Parameter Passing I/II [2/2]
	Slide 6: Review Invisible Functions I [1/2]
	Slide 7: Review Invisible Functions I [2/2]
	Slide 8: Review Managing Resources in a Class [1/2]
	Slide 9: Review Managing Resources in a Class [2/2]
	Slide 10
	Slide 11: Managing Resources in a Class An RAII Class — Usage in a Function
	Slide 12: Managing Resources in a Class An RAII Class — Usage in a Class
	Slide 13: Managing Resources in a Class Generalizing Ownership [1/3]
	Slide 14: Managing Resources in a Class Generalizing Ownership [2/3]
	Slide 15: Managing Resources in a Class Generalizing Ownership [3/3]
	Slide 16
	Slide 17: Containers & Iterators Containers — Generic Containers
	Slide 18: Containers & Iterators Containers — Troubles with C++ Built-In Arrays
	Slide 19: Containers & Iterators Containers — std::vector [1/3]
	Slide 20: Containers & Iterators Containers — std::vector [2/3]
	Slide 21: Containers & Iterators Containers — std::vector [3/3]
	Slide 22: Containers & Iterators Containers — Kinds of Data
	Slide 23: Containers & Iterators Containers — STL Generic Containers
	Slide 24: Containers & Iterators Iterators — Introduction [1/4]
	Slide 25: Containers & Iterators Iterators — Introduction [2/4]
	Slide 26: Containers & Iterators Iterators — Introduction [3/4]
	Slide 27: Containers & Iterators Iterators — Introduction [4/4]
	Slide 28: Containers & Iterators Iterators — Operations [1/3]
	Slide 29: Containers & Iterators Iterators — Operations [2/3]
	Slide 30: Containers & Iterators Iterators — Operations [3/3]
	Slide 31: Containers & Iterators Iterators — Specifying Ranges
	Slide 32: Containers & Iterators Iterators — Range-Based For-Loop [1/2]
	Slide 33: Containers & Iterators Iterators — Range-Based For-Loop [2/2]
	Slide 34: Containers & Iterators TO BE CONTINUED …

