
Example Class
Software Engineering Concepts: Testing
Thoughts on Assignment 1

CS 311 Data Structures and Algorithms

Lecture Slides

Wednesday, September 4, 2024

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2005–2024 Glenn G. Chappell

Some material contributed by Chris Hartman

continued

Unit Overview
Advanced C++ & Software Engineering Concepts

Topics: Advanced C++

▪ Expressions

▪ Parameter passing I

▪ Operator overloading

▪ Example class

▪ Parameter passing II

▪ Invisible functions I

▪ Managing resources in a class

▪ Containers & iterators

▪ Invisible functions II

▪ Error handling

▪ Using exceptions

Topics: S.E. Concepts

▪ Abstraction

▪ Assertions

▪ Testing

▪ Invariants

2024-09-04 CS 311 Fall 2024

(part)

2

Review

2024-09-04 CS 311 Fall 2024 3

Review
Software Engineering Concepts: Assertions

An assertion is a statement made in code that something must be
true—or else the code is not working properly.

C++ supports assertions through assert, a function-like
preprocessor macro defined in header <cassert>. It takes a
Boolean expression (something true or false).

assert(n >= 0);

If preprocessor symbol NDEBUG is not defined, then assert
evaluates the given expression. If it is true, then assert does
nothing further; otherwise, it crashes with a message—an
application of the fail-fast concept.

If NDEBUG is defined—typically done by IDEs in release builds—then
assert does nothing at all.

2024-09-04 CS 311 Fall 2024

See assertion.cpp.

4

Review
Example Class

TO DO

▪ Write a C++ package containing a class whose objects store and
handle a time of day, in hours, minutes, and seconds.

▪ Name the class TimeOfDay.

▪ Give it reasonable constructors.

▪ Default constructor.

▪ Constructor from hrs/mins/secs.

▪ Give it reasonable operators.

▪ Pre & post ++, -- to make the time go forward & back by 1 second.

▪ Stream insertion (<<) to print the time like “ 3:21:05”, 24-hr time.

▪ It might be nice to add other operators. We will not, due to time constraints.

▪ Give it other reasonable member functions.

▪ getTime: get hours/minutes/seconds from an object.

▪ setTime: set an object’s time, from given hrs/mins/secs.

▪ For each function, write assertions so that if all pass, then the function

will work.

2024-09-04 CS 311 Fall 2024

For a program that uses
class TimeOfDay, see

timeofday_main.cpp.

Partially done. See
timeofday.hpp &

timeofday.cpp.

5

Example Class

2024-09-04 CS 311 Fall 2024

continued

6

Example Class
More CODE

TO DO

▪ Finish coding class TimeOfDay as specified.

2024-09-04 CS 311 Fall 2024

Done. See timeofday.hpp

& timeofday.cpp.

7

2024-09-04 CS 311 Fall 2024

Example Class
Notes [1/6]

Note 1. In a C++ constructor, use of member initializers is
generally preferred to assignment of data members.

class Skink {

private:

 int _feet;

public:

 Skink()

 {

 _feet = g(3) + 1;

 }

Every data member is constructed (default constructed if there is
no initializer). On the left, _feet is default constructed and then
set. On the right, it is constructed with the value we want.

class Skink {

private:

 int _feet;

public:

 Skink()

 :_feet(g(3) + 1)

 {}
Member initializer

Assignment

Data member

8

2024-09-04 CS 311 Fall 2024

Example Class
Notes [2/6]

Note 2. It is a good idea to have a special convention for naming
C++ data members.

Common conventions include beginning the name with “m_” or
beginning or ending the name with an underscore (_).

class Skink {

private:

 int _feet;

I do not care which convention you use, but mark these names
somehow—and be consistent about it.

9

2024-09-04 CS 311 Fall 2024

Example Class
Notes [3/6]

Note 3. Avoid duplication of code & other information.

Look at the two operator++ functions. We could
have put the incrementing code into both of
them, but we did not.

Also, the constructors call setTime.

It is common for some operators to be based on other operators.
For example, postincrement nearly always calls preincrement,
as it does in TimeOfDay. Thus, we can nearly always write
postincrement for a class without knowing anything about how
incrementing works in that class.

Why is this a
good thing?

10

2024-09-04 CS 311 Fall 2024

Example Class
Notes [4/6]

Note 3 (cont’d). Avoiding code duplication is a special case of the
DRY Principle, formulated by Andy Hunt & Dave Thomas in
The Pragmatic Programmer, 1999 (DRY = Don’t Repeat
Yourself):

 Every piece of knowledge must have a single, unambiguous,
authoritative representation within a system.

Consider what this means.

Advantages of being DRY:

▪ Code is more maintainable, easier to change.

▪ Changes are less likely to introduce bugs. (Suppose some
knowledge exists in two places. Then someone changes one of
them.)

11

2024-09-04 CS 311 Fall 2024

Example Class
Notes [5/6]

Note 4. Let your compiler help you! All C++ compilers have many
warnings that they can give. I turn lots of warnings on,
including the unused-variable warning.

Q. The dummy int parameter to post-increment is never used.
How do we avoid an unused-variable warning?

A. Tell your compiler the variable might not be used, using an
attribute.

public:

 // Post-increment

 Foo operator++([[maybe_unused]] int dummy)

 {

 …
Attribute

12

2024-09-04 CS 311 Fall 2024

Example Class
Notes [6/6]

Note 5. There are three ways to deal
with the possibility of invalid
parameter values.

1. Insist that given parameters are valid.

2. Allow invalid parameter values, but fix
them in the function.

3. If invalid parameter values are passed,
then signal the client code that there
is a problem.

▪ We will discuss this further when we cover Error Handling.

Method #1 is generally the easiest.

Look at the three-parameter constructor. Which method is used?

Responsibility for handling the
problem lies with the code
executed …

… in the function.

… after the function.

… before the function.

13

Software Engineering Concepts:
Testing

2024-09-04 CS 311 Fall 2024 14

Software Engineering Concepts: Testing
Problem [1/2]

Meet Egbert. Egbert is a software developer.

Like many of us, when Egbert writes software, his natural tendency
is to start at the beginning, and write until he gets to the end.
He writes the first function, and then then second, etc.

When he gets to the end, Egbert says:

But Egbert is making a terrible mistake! <Cue ominous music>

2024-09-04 CS 311 Fall 2024

Hi.

I’m
done!

Now I can
try compiling

my code.

15

Software Engineering Concepts: Testing
Problem [2/2]

Egbert’s thinking has two problems. First, code is done when:

▪ It works.

▪ It is in a readable, maintainable, deliverable form.

Second, while Egbert works, he has no idea if he is doing the right
thing. When necessary functions are not present, code cannot
be executed—or tested. And testing is how we find most bugs.

Perhaps Egbert should prepare himself for a different career.

2024-09-04 CS 311 Fall 2024

Do you

want fries
with that?

Do you

want fries
with that?

Do YOU

want FRIES
with THAT???

Do you

want—fries
with that?

16

2024-09-04 CS 311 Fall 2024

Software Engineering Concepts: Testing
Revised Process

OR—Egbert could learn to work in a different way.

A Revised Development Process

▪ Step 1. Write dummy versions of all required components.

▪ Make sure the code compiles.

▪ Step 2. Fix every bug you can find.

▪ “Not having any code in the function body” is often a bug.

▪ Write notes to yourself in the code.

▪ Make sure the code works.

▪ In this step, the code should always compile.

▪ Step 3. Put the code into final, deliverable form.

▪ The code needs to be pretty, well commented/documented, and in line

with coding standards.

▪ Many comments can be based on notes to yourself.

▪ Make sure the code is finished.

▪ In this step, the code should always work.

First priority

17

2024-09-04 CS 311 Fall 2024

Software Engineering Concepts: Testing
Unit Testing [1/2]

There are many kinds of software testing. One important kind is
unit testing—tests for the various units in the code (functions,
classes, etc.), individually.

Unit testing is common enough that high-quality unit-testing
frameworks (also called harnesses, for some reason) are
available for most/all major programming languages.

This semester, I will provide test programs for most assignments.
These will do unit testing. My test programs use a C++ unit-
testing framework called doctest.

18

2024-09-04 CS 311 Fall 2024

Software Engineering Concepts: Testing
Unit Testing [2/2]

Avoid thinking about unit tests in terms of something like a 90-80-
70-60 scale.

Wrong! If any tests do
not pass—any tests at
all—then your software

does not work.

99% of my tests pass.
That means I get an

A+, right?

There is a lot more to
say about testing and
software development
processes. See CS 372.

19

2024-09-04 CS 311 Fall 2024

Software Engineering Concepts: Testing
Compiler Warnings

Testing is not the only way to find bugs.

Modern compilers have bug-checking capabilities. When a compiler
thinks it might have found a bug, it issues a warning. Unlike
errors, warnings do not stop compilation; they simply cause a
message to be issued.

However, these warnings are generally turned off by default.

Strong suggestions:

▪ Figure out how to turn on compiler warnings. Turn lots of them on.

▪ Make it your goal to get your code to compile with no warnings.

▪ If you find a warning unhelpful, then turn it off.

I have posted a link to a
site with suggested

compiler-warning settings.

20

Thoughts on Assignment 1

2024-09-04 CS 311 Fall 2024 21

Thoughts on Assignment 1 [1/3]

We have now covered all the Advanced C++ material needed for
Assignment 1.

Here are a few quick thoughts on Assignment 1, before we move to
the Assignment 2 material.

2024-09-04 CS 311 Fall 2024 22

Thoughts on Assignment 1 [2/3]

In Assignment 1, you write a C++ class of the kind you have
probably already written in CS 202 (Computer Science II).

But Assignment 1 differs somewhat from CS 202 work:

▪ Do a really good job; standards are high now.

▪ Pass a thorough test suite.

▪ Apply ideas we have covered.

▪ Pass parameters using the appropriate methods.

▪ Make overloaded operators member or global functions, as appropriate.

▪ Avoid duplicating code or other information.

▪ You will be required to write assertions as we did in the example class:

at the beginning of each function body, write assertions so that, if the
assertions all pass, then the function will work properly.

▪ Follow the Coding Standards.

2024-09-04 CS 311 Fall 2024 23

2024-09-04 CS 311 Fall 2024

Thoughts on Assignment 1 [3/3]

I have provided a test program, as I will for most assignments in
this class. These test programs require the doctest.h header. If
you use an IDE, then this header
should be one of your project files.

In general, there is a huge difference between passing all tests,
and passing (say) all but one of the tests. In the former case,
your code works; in the latter case, it does not.

In this class:

▪ Being on time is important.

▪ Working code is more important.

For this first assignment, passing all tests is absolutely required.
Submitted code that does not pass all tests will not be graded.

To download the header,
see the posted link.

24

	Slide 1: Example Class Software Engineering Concepts: Testing Thoughts on Assignment 1
	Slide 2: Unit Overview Advanced C++ & Software Engineering Concepts
	Slide 3
	Slide 4: Review Software Engineering Concepts: Assertions
	Slide 5: Review Example Class
	Slide 6
	Slide 7: Example Class More CODE
	Slide 8: Example Class Notes [1/6]
	Slide 9: Example Class Notes [2/6]
	Slide 10: Example Class Notes [3/6]
	Slide 11: Example Class Notes [4/6]
	Slide 12: Example Class Notes [5/6]
	Slide 13: Example Class Notes [6/6]
	Slide 14
	Slide 15: Software Engineering Concepts: Testing Problem [1/2]
	Slide 16: Software Engineering Concepts: Testing Problem [2/2]
	Slide 17: Software Engineering Concepts: Testing Revised Process
	Slide 18: Software Engineering Concepts: Testing Unit Testing [1/2]
	Slide 19: Software Engineering Concepts: Testing Unit Testing [2/2]
	Slide 20: Software Engineering Concepts: Testing Compiler Warnings
	Slide 21
	Slide 22: Thoughts on Assignment 1 [1/3]
	Slide 23: Thoughts on Assignment 1 [2/3]
	Slide 24: Thoughts on Assignment 1 [3/3]

