
Software Engineering Concepts: Abstraction
Operator Overloading
Software Engineering Concepts: Assertions

CS 311 Data Structures and Algorithms

Lecture Slides

Wednesday, August 28, 2024

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2005–2024 Glenn G. Chappell

Some material contributed by Chris Hartman

Unit Overview
Advanced C++ & Software Engineering Concepts

Topics: Advanced C++

▪ Expressions

▪ Parameter passing I

▪ Operator overloading

▪ Example class

▪ Parameter passing II

▪ Invisible functions I

▪ Managing resources in a class

▪ Containers & iterators

▪ Invisible functions II

▪ Error handling

▪ Using exceptions

Topics: S.E. Concepts

▪ Abstraction

▪ Assertions

▪ Testing

▪ Invariants



2024-08-28 CS 311 Fall 2024



2

Review

2024-08-28 CS 311 Fall 2024 3

2024-08-28 CS 311 Fall 2024

Review
Expressions [1/3]

An expression is something that has a value. Determining that
value is evaluation.

Every expression has a type.

int abc; // int is a type.

vector<int> vv; // vector<int> is a type

abc // Expressions of type int

34

abc * 34 + vv[2]

42.7 // Expression of type double

cout << "Hello" // Expression of type std::ostream

vv // Expression of type std::vector<int>

4

2024-08-28 CS 311 Fall 2024

Review
Expressions [2/3]

A C++ expression is either an Lvalue or an Rvalue—never both.

An Lvalue has a value that persists. Variables, what pointers point
to, and parts of Lvalues are all Lvalues.

abc // Lvalue

*p // Lvalue

vv[3] // Lvalue

x.qq // Lvalue

We can take the address of an Lvalue. If it is non-const, then we
can pass it by reference.

5

2024-08-28 CS 311 Fall 2024

Review
Expressions [3/3]

An Rvalue is an expression that is not an Lvalue.

42.7 // Rvalue

abc + 34 // Rvalue

int add(a, b)

{ return a+b; }

add(6, 8) // Rvalue

We expect that an Rvalue is about to go away. So we can “mess it
up” without causing problems. This can lead to faster code.

6

2024-08-28 CS 311 Fall 2024

Review
Expressions — TRY IT (Exercises)

Consider the following C++ code.

nn = rst;

cc = nn + 4;

for (int i = 0; i < 5; ++i)

 cout << cc + i << "\n";

Classify each of the following expressions as Lvalue or Rvalue.

Answers are on the next slide.

1. nn

2. rst

3. 4

4. nn + 4

5. cc + i

6. i < 5

7. cout

8. "\n"

7

2024-08-28 CS 311 Fall 2024

Review
Expressions — TRY IT (Answers)

Consider the following C++ code.

nn = rst;

cc = nn + 4;

for (int i = 0; i < 5; ++i)

 cout << cc + i << "\n";

Classify each of the following expressions as Lvalue or Rvalue.

Answers:

1. nn Lvalue

2. rst Lvalue

3. 4 Rvalue

4. nn + 4 Rvalue

5. cc + i Rvalue

6. i < 5 Rvalue

7. cout Lvalue

8. "\n" Rvalue

8

Review
Parameter Passing I [1/3]

C++ provides three primary ways to pass a parameter or return a
value.

By value:

void p1(Foo x); // Pass x by value

Foo r1(); // Return by value

By reference:

void p2(Foo & x); // Pass x by reference

Foo & r2(); // Return by reference

By reference-to-const (some people say “const reference”):

void p3(const Foo & x); // Pass x by reference-to-const

const Foo & r3(); // Return by reference-to-const

2024-08-28 CS 311 Fall 2024 9

Review
Parameter Passing I [2/3]

For many purposes, when we pass objects, reference-to-const
combines the best features of the first two methods.

By Value By Reference By Reference-
to-Const

Makes a copy YES  NO ☺ NO ☺

Allows for
polymorphism

NO  YES ☺ YES ☺

Allows implicit
type conversions

YES ☺ NO  YES ☺

Allows passing of: Any copyable
value ☺

Non-const
Lvalues ?

Any value ☺

2024-08-28 CS 311 Fall 2024 10

Review
Parameter Passing I [3/3]

For most parameter passing, we pass either by value or by
reference-to-const.

▪ By value: simple types (int, char, etc.), pointers, iterators.

▪ By reference-to-const: larger objects, or things we are not sure of.

We normally return by value.

But there are special cases where we may use other methods.

▪ We pass by reference, if we want to send the value of the
parameter back to the caller.

▪ We might return by reference or by reference-to-const, if we are
returning a value that is not going away: the former if the caller
gets to modify the value, the latter if not.

2024-08-28 CS 311 Fall 2024 11

Software Engineering Concepts:
Abstraction

2024-08-28 CS 311 Fall 2024 12

Software Engineering Concepts: Abstraction
Definitions

Abstraction: Considering a software component in terms of how
and why it is used—what it looks like from the outside—separate
from its internal implementation.

Here, “component” is just a general term for a thing: function,
class, package, etc.

We use the term “client” for code that makes use of a component.

In this course, a client is code. A user is a person.

Component

Client

Client

Client

(defined by the
specification)

Implementation
(hidden from clients and

not part of the abstraction)

Interface

2024-08-28 CS 311 Fall 2024 13

Software Engineering Concepts: Abstraction
Functional Abstraction [1/2]

Functional abstraction: applying the idea of abstraction to
functions. So, dealing with functions in terms of how and why
they are used—what they look like from the outside—separate
from their internal implementation.

You have certainly used this idea—even if you were not familiar
with the term “functional abstraction”. See the next slide for an
example.

2024-08-28 CS 311 Fall 2024 14

Software Engineering Concepts: Abstraction
Functional Abstraction [2/2]

void printIntVec(const vector<int> & data)

{

 for (size_t i = 0; i != data.size(); ++i)

 cout << data[i] << " ";

 cout << "\n";

}

Function printIntVec
prints a given vector
of ints to cout. Items

are separated by
blanks, and followed

by a blank and a
newline.

Describe this
function, in

detail.

Functional
abstraction:
what it does, but
not how it does it

2024-08-28 CS 311 Fall 2024

Function printIntVec is given a vector of

ints called data, passed by reference-to-

const. It executes a for loop in which local

size_t variable i is initialized to 0, the loop

continues as long as “i != data.size()”

evaluates to true, and i is pre-incremented

after each loop iteration. Inside the loop, a

reference to an item in data is retrieved

using the bracket operator, with parameter

i, and then inserted into cout, using

overloaded operator<<, followed by an array

of chars of size 2, which contains a blank

and a null char. After the loop, stream

manipulator endl is inserted into cout. The

function then terminates.

15

Software Engineering Concepts: Abstraction
Data Abstraction

Data abstraction: applying abstraction to the structure of data.
Consider the form of the data without regard to how it is stored.

For example, a dataset may be a
sequence of items, in some order.

Or it may be a collection in which
we look up values by key.

We look at data abstraction in the second half of the semester.

2024-08-28 CS 311 Fall 2024

Key

Associated value

5 "ab"

7 "zk" 2 "xy"

1 "gg"
9 "rh"

5 5 54 87 2 1 21

begin end

Q. What value is associated with the key 1?

A. "gg".

Q. What value lies in position 3 (start at 0)?

A. 7.

16

Operator Overloading

2024-08-28 CS 311 Fall 2024 17

Operator Overloading
Basics [1/2]

C++ allows overloading of most operators.

▪ Define standard operators for new types.

▪ No new operators, and no changes in
precedence, associativity, or arity.

▪ Function name is operator plus the symbol, e.g., operator-.

Subtraction for class Num as a global function:

Num operator-(const Num & a, const Num & b);

Or as a member function; the first operand is the object (*this):

class Num {

public:

 Num operator-(const Num & b) const;

2024-08-28 CS 311 Fall 2024

Overload: use the same
name for two things.

Arity: number of
operands.

Global: declared neither
inside a class nor inside
a function.

Member: Declared
inside a class.

18

Operator Overloading
Basics [2/2]

Operators with the same symbol are distinguished by parameters.

Num operator-(const Num & a, const Num & b); // a-b

Num operator-(const Num & a); // -a

Some cannot be distinguished by the parameters we would expect:
in particular, ++a and a++. The latter gets a dummy int; it is

always zero and may be ignored

class Num {

public:

 Num & operator++(); // ++a

 Num operator++(int dummy); // a++

2024-08-28 CS 311 Fall 2024

Why are different
return methods

used here?

19

Operator Overloading
Stream Operators [1/2]

To input or print our objects we use C++ standard-library streams.

▪ We will look at stream insertion (operator<<).

▪ Stream extraction (operator>>) is similar.

The stream insertion operator:

▪ Takes an output stream (std::ostream) and some object.

▪ Returns the output stream.

As we have observed, this makes the following work:

cout << a << b; // Same as (cout << a) << b;

2024-08-28 CS 311 Fall 2024 20

Operator Overloading
Stream Operators [2/2]

Stream insertion:

▪ Must be global.
▪ Otherwise, it is a member of std::ostream, which we cannot write.

▪ Gets its stream by reference.

▪ Because it modifies the stream (by outputting to it).

▪ Gets its object to be printed by reference-to-const.

▪ Returns its stream by reference.

▪ The stream is not going away. Also, we do not copy streams.

std::ostream & operator<<(std::ostream & theStream,

 const MyClass & theObject)

{

 theStream << theObject.x << ", " << theObject.y;

 return theStream;

}

2024-08-28 CS 311 Fall 2024

This is an example. In practice,
write whatever is appropriate for
the type your code deals with.

21

Operator Overloading
Global vs. Member [1/2]

Global function:

Num operator-(const Num & a, const Num & b);

Member function:

class Num {

public:

 Num operator-(const Num & b) const;

Suppose there is an implicit type conversion from double to Num.

▪ If we write Num - Num as a global, then we get, for free,

▪ Num - double

▪ double - Num

▪ But if it is a member, then we only get the first one. 

2024-08-28 CS 311 Fall 2024

Which is better:
global or member?

22

Operator Overloading
Global vs. Member [2/2]

Use global functions for overloaded arithmetic, comparison, and
bitwise operators that do not modify their first operand.

▪ + - binary * / % == != < > <= >= & | ^

Use global functions for overloaded operators whose first operand
is a type you cannot add members to.

▪ Common examples: stream insertion <<, stream extraction >>.

Use member functions for other overloaded operators.

▪ = [] unary * += -= *= /= ++ -- etc.

2024-08-28 CS 311 Fall 2024 23

Software Engineering Concepts:
Assertions

2024-08-28 CS 311 Fall 2024 24

Software Engineering Concepts: Assertions
Introduction [1/2]

An assertion is a statement made in code that something must be
true—or else the code is not working properly.

Many programming languages allow for assertions, often via a
function or function-like thing named “assert”.

For example, here is Python.

def get_first_item(mylist):

 assert len(mylist) > 0

 return mylist[0]

Typically, assert is given a Boolean expression—something true
or false. If the expression is true, then assert does nothing;
otherwise, assert crashes with an explanatory message.

2024-08-28 CS 311 Fall 2024 25

Software Engineering Concepts: Assertions
Introduction [2/2]

We want our code to crash? Why?

If we find a bug while developing it, then yes, we do, because of
an engineering concept called fail-fast. A fail-fast system that
detects a flaw in itself will cease operating so that the flaw can
be fixed, rather than continuing a flawed process.

We generally apply the fail-fast idea to software systems when
they are under development.

2024-08-28 CS 311 Fall 2024 26

Software Engineering Concepts: Assertions
assert in C++ [1/3]

The C++ Standard Library includes assert. It is defined in the
header <cassert>.

include <cassert> // For assert

assert looks like a function, but it is actually a preprocessor
macro, so there is no “using”.

assert takes an expression of type bool, which it evaluates. If the
result is true, then assert does nothing more; otherwise, it
crashes with a message, which typically gives the source file,
line number, and the expression that was false.

assert(n >= 0);

2024-08-28 CS 311 Fall 2024 27

Software Engineering Concepts: Assertions
assert in C++ [2/3]

The behavior of assert that was described is what happens if the
preprocessor symbol NDEBUG is not defined. If this symbol is
defined, then assert does nothing at all; it does not even
evaluate the given expression.

If you use a C/C++ integrated development environment (IDE)
that has debug and release builds, then it is likely that NDEBUG is
not defined in debug builds, but is defined in release builds. We
generally do not apply fail-fast to code that is released or
shipped to customers.

2024-08-28 CS 311 Fall 2024 28

Software Engineering Concepts: Assertions
assert in C++ [3/3]

We use assert by placing it as a statement in normal code. It
indicates something that must be true, or else there is a bug in
the code.

So an appearance of assert serves as a kind of active comment. It
tells the reader something, but it also does something.

TO DO

▪ Write some C++ assertions using assert.

2024-08-28 CS 311 Fall 2024

See assertion.cpp.

29

	Slide 1: Software Engineering Concepts: Abstraction Operator Overloading Software Engineering Concepts: Assertions
	Slide 2: Unit Overview Advanced C++ & Software Engineering Concepts
	Slide 3
	Slide 4: Review Expressions [1/3]
	Slide 5: Review Expressions [2/3]
	Slide 6: Review Expressions [3/3]
	Slide 7: Review Expressions — TRY IT (Exercises)
	Slide 8: Review Expressions — TRY IT (Answers)
	Slide 9: Review Parameter Passing I [1/3]
	Slide 10: Review Parameter Passing I [2/3]
	Slide 11: Review Parameter Passing I [3/3]
	Slide 12
	Slide 13: Software Engineering Concepts: Abstraction Definitions
	Slide 14: Software Engineering Concepts: Abstraction Functional Abstraction [1/2]
	Slide 15: Software Engineering Concepts: Abstraction Functional Abstraction [2/2]
	Slide 16: Software Engineering Concepts: Abstraction Data Abstraction
	Slide 17
	Slide 18: Operator Overloading Basics [1/2]
	Slide 19: Operator Overloading Basics [2/2]
	Slide 20: Operator Overloading Stream Operators [1/2]
	Slide 21: Operator Overloading Stream Operators [2/2]
	Slide 22: Operator Overloading Global vs. Member [1/2]
	Slide 23: Operator Overloading Global vs. Member [2/2]
	Slide 24
	Slide 25: Software Engineering Concepts: Assertions Introduction [1/2]
	Slide 26: Software Engineering Concepts: Assertions Introduction [2/2]
	Slide 27: Software Engineering Concepts: Assertions assert in C++ [1/3]
	Slide 28: Software Engineering Concepts: Assertions assert in C++ [2/3]
	Slide 29: Software Engineering Concepts: Assertions assert in C++ [3/3]

