
Course Overview
Expressions
Parameter Passing I

CS 311 Data Structures and Algorithms

Lecture Slides

Monday, August 26, 2024

Glenn G. Chappell

Department of Computer Science

University of Alaska Fairbanks

ggchappell@alaska.edu

© 2005–2024 Glenn G. Chappell

Some material contributed by Chris Hartman

Course Overview

2024-08-26 CS 311 Fall 2024 2

BS in Computer Science. All are required.

BA in Computer Science. Black border: required.

BS in Computer Engineering. Bold-border: required.
CS 331, CS 411: Approved electives. CS 372: Ask your advisor.

2024-08-26 CS 311 Fall 2024

Course Overview
CS 311 in the Comp. Sci. & Comp. Eng. Programs

CS 372
Software

Construction

CS 202
Comp. Sci. II

CS 201
Comp. Sci. I

CS 411
Analysis

of Algorithms

Quality Software Development

Efficiency of Algorithms

CS 331
Programming

Languages

CS 311
Data Structures

& Algorithms

MATH 307
Discrete

Mathematics

3

2024-08-26 CS 311 Fall 2024

Course Overview
Goals

Upon successful completion of CS 311, you should:

▪ Have experience writing and documenting high-quality code.

▪ Understand proper error handling, enabling software
components to support robust, reliable applications.

▪ Be able to perform basic analyses of algorithmic efficiency,
including use of big-O and related notation.

▪ Be familiar with various standard algorithms, including those
for searching and sorting.

▪ Understand what data abstraction is, and how it relates to
software design.

▪ Be familiar with standard container data structures,
including implementations and relevant trade-offs.

4

2024-08-26 CS 311 Fall 2024

Course Overview
Programming Language

We will achieve these goals, in part, by doing an in-depth study of
a particular programming language, along with its standard
libraries: ISO C++ (2017 standard) and its Standard Template
Library.

You will need to have access to an up-to-date C++ compiler. Any
version of a major compiler released within the last couple of
years should be fine.

You may use the CS labs (Duckering, 5th floor), which have
appropriate C++ compilers available.

Visual Studio 2017
is not acceptable.

5

2024-08-26 CS 311 Fall 2024

Course Overview
Topics

The following topics will be covered, roughly in order:

▪ Advanced C++

▪ Software Engineering Concepts

▪ Recursion

▪ Searching

▪ Algorithmic Efficiency

▪ Sorting

▪ Data Abstraction

▪ Basic Abstract Data Types & Data Structures:

▪ Smart Arrays & Strings

▪ Linked Lists

▪ Stacks & Queues

▪ Trees (various kinds)

▪ Priority Queues

▪ Tables

▪ Briefly: external data, graph algorithms.

Goal: Practical generic containers

A container is a data structure holding
multiple items, usually all the same type.

A generic container is one that can hold
objects of client-specified type.

6

2024-08-26 CS 311 Fall 2024

Course Overview
Assignments

Your primary task this semester is to complete eight high-quality,
tested, documented software projects. Descriptions of these will
be posted on the class webpage as they are assigned.

1. High-Quality Class

2. Moderately Smart Array

3. Potpourri

▪ Functions involving exceptions, Linked Lists, and recursion

4. Recursive Backtracking

5. Frightfully Smart Array

6. Linked Lists

7. Trees

8. Using Tables

7

2024-08-26 CS 311 Fall 2024

Course Overview
Terminology & Notation

We will be covering a lot of terminology and notation.

Terminology is the words we use when discussing some technical
topic. When I introduce terminology, it is in boldface.

Some terminology (which you should already know): when we add
the numbers three and five, we obtain the number eight.

Notation is the symbols we use in technical discussions.

Some notation (which you should already know): 3 + 5 = 8.

It is very important to know the terminology and notation we will
be using. Without it, we cannot even begin to talk about the
course material. So watch out for it!

8

2024-08-26 CS 311 Fall 2024

Unit Overview
Advanced C++ & Software Engineering Concepts

Our first unit: Advanced C++ and Software Engineering Concepts.
Some of this will be review from CS 201 & 202.

Topics

▪ Advanced C++

▪ Expressions

▪ Parameter passing I

▪ Operator overloading

▪ Example class

▪ Parameter passing II

▪ Invisible functions I

▪ Managing resources in a class

▪ Containers & iterators

▪ Invisible functions II

▪ Error handling

▪ Using exceptions

Later in the semester we will cover other advanced C++ topics.

▪ Software Engineering Concepts

▪ Abstraction

▪ Assertions

▪ Testing

▪ Invariants

These two lists will be
covered concurrently.

9

Expressions

2024-08-26 CS 311 Fall 2024 10

2024-08-26 CS 311 Fall 2024

Expressions
What an Expression Is

An expression is something that has a value.

Evaluating an expression means determining its value.

Examples of C++ expressions:
▪ abc

▪ 42.7

▪ (n+3)*14-q+vv[6]

▪ foo(x)

▪ cout << "Hello!"

The following are not C++ expressions:

▪ int abc;

▪ return abc;

▪ for (int i = 0; i < 10; ++i) cout << i << "\n";

▪ using std::cout;

Q. What is the value of this expression?

A. The value is cout.

So we can do this:

(cout << "Hello!") << x;

… which is the same as this:

cout << "Hello!" << x;

11

2024-08-26 CS 311 Fall 2024

Expressions
Types [1/2]

We classify expressions according to the kind of value each
represents. An expression’s classification is its type.

int abc;

int is a type. abc is a variable of type int.

34 // Expression of type int

abc + 34 // Expression of type int

42.7 // Expression of type double

cout << x // Expression of type std::ostream

vector<int> vv;

vv // Expression of type std::vector<int>

vv[2] // Expression of type int

12

2024-08-26 CS 311 Fall 2024

Expressions
Types [2/2]

When we need a value whose type is different from that of a given
expression, a type conversion may be done.

double dd = 34; // 34 has type int;

 // this will be converted to double

Type conversions can be explicit (stated in the code) or implicit.
The above type conversion is implicit. That below is explicit.

double dd2 = static_cast<double>(abc);

A type conversion creates a new value; it does not modify the
original. For example, above, abc is unchanged.

13

2024-08-26 CS 311 Fall 2024

Expressions
Lvalues & Rvalues [1/5]

Every C++ expression is either an Lvalue or an Rvalue.

An Lvalue (say “ELL value”) has a value that persists beyond the
current expression. For example, every variable is an Lvalue.

int abc; // abc is an Lvalue

const double dd; // dd is an Lvalue

If something is an Lvalue, then parts of it are also Lvalues. And
something pointed to by a pointer is an Lvalue.

vv[3] // vv is an Lvalue, and so is vv[3]

x.qq // x is an Lvalue, and so is x.qq

*p // *p is an Lvalue

14

2024-08-26 CS 311 Fall 2024

Expressions
Lvalues & Rvalues [2/5]

An Lvalue has a location in memory. We can take its address.

int * p = &abc; // Legal because abc is an Lvalue

We can also pass an Lvalue by reference—if it is non-const.

void incr(int & n)

{ ++n; }

incr(abc); // Legal because abc is a non-const Lvalue

Historically, “Lvalue” comes from the idea that we can put it on the
left-hand side of an assignment operator (=). “L” stood for “left”.
But note that, in C++, a const variable is still an Lvalue.

15

2024-08-26 CS 311 Fall 2024

Expressions
Lvalues & Rvalues [3/5]

An Rvalue (say “ARR value”) is an expression that is not an
Lvalue.

42.7 // 42.7 is an Rvalue

abc + 34 // abc + 34 is an Rvalue

int add(a, b)

{ return a+b; }

add(6, 8) // add(6, 8) is an Rvalue

16

2024-08-26 CS 311 Fall 2024

Expressions
Lvalues & Rvalues [4/5]

We cannot pass an Rvalue by reference.

incr(6); // DOES NOT COMPILE!

A C++ expression is either an Lvalue or an Rvalue, but never both!

In the following code, is bb an Lvalue or an Rvalue?

aa = bb;

17

2024-08-26 CS 311 Fall 2024

Expressions
Lvalues & Rvalues [5/5]

Why do we care about Lvalues & Rvalues?

As noted on previous slides, the distinction affects whether we can
take the address of a value and whether we can pass it by
reference.

Further, an Rvalue is something that we can expect is about to go
away. That means that we can “mess it up” without causing
problems. This can allow for code speed-ups. More on this later.

18

Parameter Passing I

2024-08-26 CS 311 Fall 2024 19

Parameter Passing I
Overview

C++ provides three primary ways to pass a parameter or return a
value.

By value:

void p1(Foo x); // Pass x by value

Foo r1(); // Return by value

By reference:

void p2(Foo & x); // Pass x by reference

Foo & r2(); // Return by reference

By reference-to-const (some people say “const reference”):

void p3(const Foo & x); // Pass x by reference-to-const

const Foo & r3(); // Return by reference-to-const

2024-08-26 CS 311 Fall 2024 20

Parameter Passing I
Details — By Value [1/2]

void p1(Foo x);

Foo r1();

Passing by value means that a copy is made.

▪ Below, x (in p1) is a copy of y. Modifying x does nothing to y.

Foo y;

p1(y);

The copy is made with an implicit function call to the Foo copy
constructor or move constructor.

▪ This may be slow, if y is a large object.

▪ And if Foo has no copy/move constructor, then it is impossible.

2024-08-26 CS 311 Fall 2024 21

Parameter Passing I
Details — By Value [2/2]

Passing by value does not allow for proper handling of derived
classes, including calling of virtual functions.

class Base { … };

class Derived : public Base { … };

void ff(Base bb);

Derived dd;

ff(dd); // This might cause problems

2024-08-26 CS 311 Fall 2024 22

Parameter Passing I
Details — By Reference [1/2]

void p2(Foo & x);

Foo & r2();

When passing by reference, no copy is made. The original and
passed versions are the same object.

Foo y;

p2(y); // Modifying x inside p2 will modify y

Be careful when returning by reference. Do not return a value that
goes away when the function ends.

int & squareThis(int n)

{ int square = n * n; return square; }

2024-08-26 CS 311 Fall 2024

BAD! 

23

Parameter Passing I
Details — By Reference [2/2]

Passing by reference does allow for proper handling of derived
classes, including calling of virtual functions.

class Base { … };

class Derived : public Base { … };

void ff(Base & bb);

Derived dd;

ff(dd); // No problem

Only non-const Lvalues can be passed by reference.

2024-08-26 CS 311 Fall 2024

Note

24

Parameter Passing I
Details — By Reference-to-Const [1/2]

void p3(const Foo & x);

const Foo & r3();

When passing by reference-to-const, no copy is made.

▪ Instead, the original and the passed version are the same object …

▪ … unless they are of different types; implicit type conversions may
be done.

void h(const double & z);

const double dd;

const int ii;

h(dd); // z is dd

h(ii); // Legal, but x is not ii

As with by-reference, be careful returning by reference-to-const.

2024-08-26 CS 311 Fall 2024 25

Parameter Passing I
Details — By Reference-to-Const [2/2]

Like passing by reference, passing by reference-to-const allows for
proper handling of derived classes, including calling of virtual
functions.

Const variables may be passed by reference-to-const. The passed
version is not modifiable.

In fact, any value at all may be passed by reference-to-const.

2024-08-26 CS 311 Fall 2024 26

Parameter Passing I
Details — Summary of the Three

*This is a problem when we pass values that take time to copy, like large objects.

**This is a problem when we use inheritance, as we often do with objects.

***Maybe this is bad. When we want to send changes back to the client (which is a
big reason for passing by reference), disallowing const values is a good thing.

So, for many purposes, when we pass objects, reference-to-const
combines the best features of the first two methods.

By Value By Reference By Reference-
to-Const

Makes a copy YES * NO ☺ NO ☺

Allows for
polymorphism

NO ** YES ☺ YES ☺

Allows implicit
type conversions

YES ☺ NO  YES ☺

Allows passing of: Any copyable
value ☺

Non-const
Lvalues ?***

Any value ☺

2024-08-26 CS 311 Fall 2024 27

Parameter Passing I
Usage — Normal

For most parameter passing, we pass either by value or by
reference-to-const.

▪ By value: simple types (int, char, etc.), pointers, iterators.

▪ By reference-to-const: larger objects, or things we are not sure of.

template<typename T>

void f1(const T & x); // x might be a large object (?)

We normally return by value.

Foo f2();

But there are special cases where we may use other methods …

2024-08-26 CS 311 Fall 2024 28

Parameter Passing I
Usage — Special [1/2]

We pass by reference, if we want to send the value of the
parameter back to the caller.

// Convert seconds after midnight to hrs, mins, secs.

void secsToHMS(int secs, int & h, int & m, int & s);

2024-08-26 CS 311 Fall 2024 29

Parameter Passing I
Usage — Special [2/2]

We might return by reference or by reference-to-const, if we are
returning a value that is not going away.

▪ The former if the caller gets to modify the value; the latter if not.

▪ Idea: You are returning an Lvalue to the caller.

class BunchOfInts {

public:

 int & operator[](std::size_t index)

 { return _theInts[index]; }

 const int & operator[](std::size_t index) const

 { return _theInts[index]; }

private:

 int _theInts[100];

};

2024-08-26 CS 311 Fall 2024 30

	Slide 1: Course Overview Expressions Parameter Passing I
	Slide 2
	Slide 3: Course Overview CS 311 in the Comp. Sci. & Comp. Eng. Programs
	Slide 4: Course Overview Goals
	Slide 5: Course Overview Programming Language
	Slide 6: Course Overview Topics
	Slide 7: Course Overview Assignments
	Slide 8: Course Overview Terminology & Notation
	Slide 9: Unit Overview Advanced C++ & Software Engineering Concepts
	Slide 10
	Slide 11: Expressions What an Expression Is
	Slide 12: Expressions Types [1/2]
	Slide 13: Expressions Types [2/2]
	Slide 14: Expressions Lvalues & Rvalues [1/5]
	Slide 15: Expressions Lvalues & Rvalues [2/5]
	Slide 16: Expressions Lvalues & Rvalues [3/5]
	Slide 17: Expressions Lvalues & Rvalues [4/5]
	Slide 18: Expressions Lvalues & Rvalues [5/5]
	Slide 19
	Slide 20: Parameter Passing I Overview
	Slide 21: Parameter Passing I Details — By Value [1/2]
	Slide 22: Parameter Passing I Details — By Value [2/2]
	Slide 23: Parameter Passing I Details — By Reference [1/2]
	Slide 24: Parameter Passing I Details — By Reference [2/2]
	Slide 25: Parameter Passing I Details — By Reference-to-Const [1/2]
	Slide 26: Parameter Passing I Details — By Reference-to-Const [2/2]
	Slide 27: Parameter Passing I Details — Summary of the Three
	Slide 28: Parameter Passing I Usage — Normal
	Slide 29: Parameter Passing I Usage — Special [1/2]
	Slide 30: Parameter Passing I Usage — Special [2/2]

