CS 311 Data Structures and Algorithms, Fall 2024 In-Class Worksheet 2: The Master Theorem—Solutions

Worksheet distributed in class on Monday, October 7.

1. Algorithm *B* is given a list as input. It uses a Decrease and Conquer strategy. It splits its input in half (or nearly so), and makes a recursive call on one of the parts. It also does other work requiring linear time.

Use the Master Theorem to determine the order of Algorithm *B*. As a guide through this process, answer each of the following.

Get b & a from the above description: 2 nearly equal-sized parts, 1 recursive call.

 $b = \underline{2};$ $a = \underline{1}.$

f(n) is the amount of other work. This is linear time: $\Theta(n)$, that is, $\Theta(n^1)$.

f(n) is $\Theta(n^d)$. $d = \underline{1}$.

a = 1. $b^d = 2^1 = 2$. So $a < b^d$.

Compare *a* and b^d . Circle one comparison operator: $a \bigcirc = b^d$.

"<" gives case 1, "=" gives case 2, and ">" gives case 3.

Which case of the Master Theorem? Circle one: (1) 2 3

Case 1 of the Master Theorem says $\Theta(n^d)$. So $\Theta(n^1)$, that is, $\Theta(n)$: linear time.

Conclusion. The order of Algorithm *B* is (simplify!): $\underline{\Theta(n)}$, or linear time.