
Haskell: I/O
Haskell: Data

CS 331 Programming Languages
Lecture Slides
Monday, March 6, 2023

Glenn G. Chappell
Department of Computer Science
University of Alaska Fairbanks
ggchappell@alaska.edu

© 2017–2023 Glenn G. Chappell

continued

Review

2023-03-06 CS 331 Spring 2023 2

Review
Haskell: I/O — String Conversion [1/2]

A Haskell typeclass (or simply class) is a collection of types that
implement a common interface. Haskell does overloading only
via typeclasses.

Some commonly used typeclasses:
§ Eq: Equality-comparable types. Overloads: ==, /= (inequality).
§ Ord: Orderable types. Overloads: <, <=, >, >=.
§ Num: Numeric types. Overloads: binary +, -, *, abs, etc.
§ Show: Showable types. Overloads: show (convert to String).
§ Read: Readable types. Overloads: read (convert from String).

The last two typeclasses above involve String conversion and so
are important when doing I/O.

But note that Haskell keeps String
conversion and I/O largely separate.

2023-03-06 CS 331 Spring 2023

For code from this topic,
see io.hs.

3

Review
Haskell: I/O — String Conversion [2/2]

To convert a value of a showable type to a String, pass it to show.

> show [True, False]

"[True,False]"

To convert a String to a readable type, pass the String to read.
Type annotations are sometimes needed.

> fivestr = "5"

> 2 + read fivestr

7

> read fivestr -- Convert String to ... what?

[Error]
> (read fivestr)::Integer

5

2023-03-06 CS 331 Spring 2023 4

Review
Haskell: I/O — Simple Output, About I/O Actions [1/4]

I/O would seem to involve side effects—which Haskell forbids.
A side effect description is stored in a Haskell I/O action.
Example. Function putStr takes a String and returns an I/O

action representing printing the String to the standard output.

> :t putStr

putStr :: String -> IO ()

In a Haskell program, the return value of main should be an I/O
action. The side effects described by its return value are
performed by the runtime environment.

Here is a Haskell hello-world program.

main = putStrLn "Hello, world!"

2023-03-06 CS 331 Spring 2023

Like putStr, but add a newline
at the end of the given String.

Return type: I/O action
wrapping a “nothing” value

5

Review
Haskell: I/O — Simple Output, About I/O Actions [2/4]

An I/O action includes:
§ a description of a sequence of zero or more side effects, and
§ a wrapped (potential) value.

Here is an illustration.

The I/O action returned by putStr, illustrated as above.

2023-03-06 CS 331 Spring 2023

I/O Action
Description of sequence
of zero or more side effects

Wrapped (potential) value

Print String

()
I/O Action

returned by putStr

Description of side effect:
print a String

Wrapped “nothing” value

6

Review
Haskell: I/O — Simple Output, About I/O Actions [3/4]

Multiple I/O actions can be combined into a single I/O action. In all
cases, the resulting I/O action has:
§ A description of all side effects from the combined I/O actions.
§ The wrapped value from the last of the combined I/O actions.

2023-03-06 CS 331 Spring 2023

+ + + +

All side effects

Last wrapped value

7

Review
Haskell: I/O — Simple Output, About I/O Actions [4/4]

The >> operator combines two I/O actions into one I/O action, as
on the previous slide.

> putStr "Hello" >> putStrLn " there!"

Hello there!

Chain them to combine three or more I/O actions into one.

x = putStr "I have " >> putStr (show (73*94*82))

>> putStrLn " hamsters."

>> putStrLn "Really."

> x

I have 562684 hamsters.

Really.

2023-03-06 CS 331 Spring 2023 8

Haskell: I/O
Simple Input [1/4]

When we do input, we use an I/O action that wraps the value we
are inputting.

> :t getLine

getLine :: IO String

getLine returns an I/O action whose side effect
is inputting a line of text from the standard
input. The wrapped value is a String: the
line of text, without the ending newline.

We can access the wrapped String, not by pulling it out of the I/O
action, but by pushing a function into the I/O action, using the
>>= operator. See the next slide.

2023-03-06 CS 331 Spring 2023

The returned I/O action
wraps a String.

I/O Action
returned by
getLine

Input a line

String:
line of input

9

Haskell: I/O
Simple Input [2/4]

Using the >>= operator, we can combine
§ an I/O action wrapping a value, and
§ a function that takes such a value and

returns an I/O action.

The wrapped value is
passed to the function,
which returns an I/O
action.

The two I/O actions are
combined in the usual way: side
effects of both, wrapped value of last.

2023-03-06 CS 331 Spring 2023

Function

+ Function

10

Haskell: I/O
Simple Input [3/4]

For example, getLine returns an I/O action wrapping a String.
Function putStrLn takes a String and returns an I/O action.

> getLine >>= putStrLn

Howdy!
Howdy!

2023-03-06 CS 331 Spring 2023

Typed by user

putStrLn

I/O action returned
by getLine

Input a line

String:
line of input

Print String

String:
line of input

Input a line Print String

()

()

I/O action returned
by putStrLn

11

Haskell: I/O
Simple Input [4/4]

I/O actions involving multiple side effects work, too.

> putStr "Type something: " >> getLine >>= putStrLn

Type something: I like hamsters!
I like hamsters!

We can give the parameter of putStrLn a name:

> getLine >>= (\ line -> putStrLn line)

Hamsters rule ...

Hamsters rule ...
> getLine >>= (\ line -> putStrLn (reverse line))

... this planet and others like it.

.ti ekil srehto dna tenalp siht ...

2023-03-06 CS 331 Spring 2023

Same as putStrLn
(right?)

12

Haskell: I/O

2023-03-06 CS 331 Spring 2023

continued

13

Haskell: I/O
Do-Expression [1/2]

Haskell’s do-expression offers a cleaner way to write I/O.
The keyword do is followed by an indented block. I/O actions in the

block are combined into a single I/O action. Internally, this is
done using the >> and >>= operators.

Using operators:
putStr s >> putStrLn t

Using a do-expression:
do

putStr s

putStrLn t

2023-03-06 CS 331 Spring 2023

Using operators:
getLine >>=

(\ line -> putStrLn line)

Using a do-expression:
do

line <- getLine

putStrLn line
This binds the name line to the I/O-
wrapped value. Variable line can then
be used in the rest of the do-expression.

14

Haskell: I/O
Do-Expression [2/2]

TO DO
§ Write a function that inputs a line of text and then prints a message

indicating the number of characters entered. Use a do-expression.

Useful
§ Function hFlush is given a handle* to an open file; it returns an I/O

action that flushes** the file. Do “hFlush stdout” after printing a
prompt and before doing input, to ensure that the prompt appears
before input is entered.

§ hFlush is a Haskell standard-library function, but it is not in the
prelude. To use it in a source file, do “import System.IO” near the
beginning of the file.

*Handle: object that identifies and allows access to an open file.
**Flush: write any buffered characters.

2023-03-06 CS 331 Spring 2023

Done. See io.hs.

15

Haskell: I/O
return [1/2]

So far, every I/O action we have used has described one or more
side effects. But an I/O action can also involve zero side effects.

To create a no-side-effect I/O action wrapping a particular value,
pass the value to return.
§ return x produces a do-nothing I/O action that wraps x.
§ return () produces a do-nothing, wrap-“nothing” I/O action.

Haskell’s return does not return! It simply creates a do-nothing
I/O action. However, generally we only use return as the last
thing in a do-expression, so it feels like it returns.

2023-03-06 CS 331 Spring 2023

return

Otherwise, it is
pointless (right?).

16

Haskell: I/O
return [2/2]

getChar does single-character input. It returns an I/O action
wrapping a Char.

TO DO
§ Using getChar, write myGetLine, which should do the same thing as

getLine.
§ Write code to use myGetLine.

Now we have examples of flow of control inside a do-expression:
both selection (using if … then … else) and repetition (using
recursion).

2023-03-06 CS 331 Spring 2023

Done. See io.hs.

17

Haskell: I/O
“let” in a Do-Expression [1/2]

One last bit of do-expression syntax remains. We can use
let NAME = EXPR inside a do-expression to bind a name to a
normal value (not I/O-wrapped) for the remainder of the block.

foo = do

let n = 42
putStr "n = "

putstrLn $ show n

let nsq = n*n

putStr "n + n*n = "

putStrLn $ show (n+nsq)

2023-03-06 CS 331 Spring 2023 18

Haskell: I/O
“let” in a Do-Expression [2/2]

TO DO
§ Write a program of the kind that might be assigned early in

Computer Science I. Input a number. If the number is zero, then
quit. Otherwise, print a message giving some value computed from
the number (its square?), and repeat.

2023-03-06 CS 331 Spring 2023

Done. See io.hs.

Remember: a Haskell function must have
a consistent return type. If one branch of

a selection control structure (pattern
matching, if … then … else, guards)

returns an I/O action, then the other
branches must also return I/O actions.

19

Haskell: I/O
Notes [1/2]

Summary of Haskell I/O
§ Haskell string conversions are largely separate from I/O.

§ show converts a value to a String.
§ read gets a value from a String. A type annotation may be required.

§ An I/O action holds a description of a sequence of side effects plus
a wrapped value.

§ I/O is performed by returning an I/O action from a program.
§ A do-expression combines multiple I/O actions into a single I/O

action. This construction is syntactic sugar around the >> and >>=
operators.

§ Inside a do-expression, NAME <- EXPR binds an identifier to an
I/O-wrapped value.

§ Inside a do-expression, let NAME = EXPR binds an identifier to a
non-I/O value.

§ return EXPR creates a do-nothing (no side effects) I/O action
wrapping the given value.

2023-03-06 CS 331 Spring 2023 20

Haskell: I/O
Notes [2/2]

If a Haskell program uses values obtained via input, then its
behavior is dependent on a side effect. So purity would seem to
be compromised. (Right?)

Solution: the >>= operator (always used when doing input) actually
includes the function passed to it in the returned I/O action—not
the result of calling the function, but the function itself.

getLine >>= putStrLn

And what is actually included in the returned I/O action is a
function to call to run the entire remainder of the program.

So when we do input, we might as well be saying, “This program is
finished. Now do some input, and pass the value to a separate
program; here is its code.” And purity is not compromised.

2023-03-06 CS 331 Spring 2023

The resulting I/O action will
include function putStrLn.

21

Haskell: Data

2023-03-06 CS 331 Spring 2023 22

Haskell: Data
data Declaration [1/3]

We finish our coverage of Haskell by looking at Haskell’s facilities
for defining new types and implementing data structures.

Consider a structure holding information about a product sold in a
store. We need to keep the name of the product and the name
of the manufacturer.

In C++, we might do something like this:

class Product {

private:

string productName;
string manufacturerName;

…

};

2023-03-06 CS 331 Spring 2023

For code from this topic,
see data.hs.

23

Haskell: Data
data Declaration [2/3]

Here is the more-or-less equivalent Haskell.

data Product = Pr String String

-- product name, manufacturer name

Product is the name of a new type.
Pr is a constructor for that type. Values of type Product are

marked by the fact that they begin with “Pr”.

For example, here is a (mostly useless) function that takes a
Product and returns the same Product.

doNothing :: Product -> Product
doNothing (Pr pn mn) = Pr pn mn

2023-03-06 CS 331 Spring 2023 24

Haskell: Data
data Declaration [3/3]

Pattern matching works with constructors.
We can use this to retrieve names from a Product object.

-- pName - Get product name from a Product
pName :: Product -> String

pName (Pr pn _) = pn

-- mName - Get manufacturer name from a Product

mName :: Product -> String
mName (Pr _ mn) = mn

2023-03-06 CS 331 Spring 2023 25

Haskell: Data
Overloading & Typeclasses [1/3]

Suppose we wish to test whether two Product values are the
same. We consider this to be true if they have the same product
name and the same manufacturer name.

sameProduct :: Product -> Product -> Bool

sameProduct (Pr pn1 mn1) (Pr pn2 mn2) =
(pn1 == pn2) && (mn1 == mn2)

But it would be nicer if we could use the “==” operator.

And in fact we can do this.
Overloading in Haskell is done using typeclasses. To overload the

“==” operator, we use typeclass Eq.

2023-03-06 CS 331 Spring 2023 26

Haskell: Data
Overloading & Typeclasses [2/3]

To overload the “==” operator for type Product, we place this type
into the Eq typeclass. We want type Product to be an instance
of class Eq.

In the instance declaration, we provide a definition of the “==”
operator for Product.

instance Eq Product where
Pr pn1 mn1 == Pr pn2 mn2 =

(pn1 == pn2) && (mn1 == mn2)

Now we can use the “==” operator with Product.

And we can also use “/=” (the inequality operator). Haskell
typeclasses typically include default definitions of overloaded
functions in terms of others.

2023-03-06 CS 331 Spring 2023 27

Haskell: Data
Overloading & Typeclasses [3/3]

We can similarly provide conversion to String for Product
(overloading function show) by placing Product into the Show
typeclass.

instance Show Product where

show (Pr pn mn) = pn ++ " [made by " ++ mn ++ "]"

In GHCi:

> Pr "Tide" "Procter & Gamble"

Tide [made by Procter & Gamble]

2023-03-06 CS 331 Spring 2023 28

Haskell: Data
TO BE CONTINUED …

Haskell: Data will be continued next time.

2023-03-06 CS 331 Spring 2023 29

