Two-point Boundary Value Problems: Numerical Approaches

Math 615, Spring 2010
abbreviations

- ODE = ordinary differential equation
- PDE = partial differential equation
- IVP = initial value problem
- BVP = boundary value problem
- MOP = MATLAB or OCTAVE or PYLAB
Outline

1. classical IVPs and BVPs with by-hand solutions
2. a more serious example: a BVP for equilibrium heat
3. finite difference solution of two-point BVPs
4. shooting to solve two-point BVPs
5. a more serious example: solutions
6. exercises
classical ODE problems: IVP vs BVP

Example 1: ODE IVP. find $y(x)$ if

$$y'' + 2y' - 8y = 0, \quad y(0) = 1, \quad y'(0) = 0$$

Example 2: ODE BVP. find $y(x)$ if

$$y'' + 2y' - 8y = 0, \quad y(0) = 1, \quad y(1) = 0$$
classical ODE problems: IVP vs BVP

Example 1: ODE IVP. find $y(x)$ if

$$y'' + 2y' - 8y = 0, \quad y(0) = 1, \quad y'(0) = 0$$

Example 2: ODE BVP. find $y(x)$ if

$$y'' + 2y' - 8y = 0, \quad y(0) = 1, \quad y(1) = 0$$

• both problems can be solved by hand

• in fact, the ODE has constant coefficients so we can find characteristic polynomial and general solution ... like this:

if $y(x) = e^{rx}$ then $r^2 + 2r - 8 = (r + 4)(r - 2) = 0$ so

$$y(x) = c_1 e^{-4x} + c_2 e^{2x}$$

• Example 1 gives system $c_1 + c_2 = 1, \ -4c_1 + 2c_2 = 0$ for coefficients; get solution $y(x) = (1/3)e^{-4x} + (2/3)e^{2x}$

• Example 2 gives system $c_1 + c_2 = 1, \ e^{-4}c_1 + e^{2}c_2 = 0$ for coefficients; get solution

$$y(x) = (1 - e^{-6})^{-1}e^{-4x} + (1 - e^{6})^{-1}e^{2x}$$
just for practice: viewing solns with MATLAB/OCTAVE

```matlab
x = 0:.001:1;
y1 = exp(-4*x); y2 = exp(2*x);
yIVP = (1/3)*y1 + (2/3)*y2;
yBVP = (1/(1-exp(-6)))*y1 + (1/(1-exp(6)))*y2;
plot(x,yIVP,x,yBVP), grid on
legend('IVP soln','BVP soln')
```

![Graph showing IVP and BVP solutions](image_url)
obvious name: “two-point BVP”

again:

Example 2: ODE BVP. find $y(x)$ if

$$y'' + 2y' - 8y = 0, \quad y(0) = 1, \quad y(1) = 0$$

- Example 2 is called a “two-point BVP” because the solution is known at two points (duh!)
- a two-point BVP includes an ODE and the value of the solution at two different locations
- the ODE can be of any order, as long as it is at least two, because first-order ODEs cannot satisfy two conditions (generally)
- but there is no guarantee that a two-point BVP can be solved (see below), even though that is the usual case
- we will also be considering boundary value problems for PDEs in this course (i.e. problems including no initial values); these are “∞-point BVPs” I suppose
recall: a standard manipulation of a 2nd order ODE
Consider the general linear 2nd-order ODE:

\[y'' + p(x)y' + q(x)y = r(x) \] \hspace{1cm} (1)

Also consider the (almost-completely) general 2nd-order ODE:

\[y'' = f(x, y, y') \] \hspace{1cm} (2)

- these can be written as systems of coupled 1st-order ODEs
- in fact, equation (1) is equivalent to

\[
\begin{pmatrix}
y'
\end{pmatrix} =
\begin{pmatrix}
v \\
v
\end{pmatrix} =
\begin{pmatrix}
-v \\
-p(x)v - q(x)y + r(x)
\end{pmatrix}
\]

- and equation (2) is equivalent to

\[
\begin{pmatrix}
y'
\end{pmatrix} =
\begin{pmatrix}
v \\
v
\end{pmatrix} =
\begin{pmatrix}
f(x, y, v)
\end{pmatrix}
\]

- first order systems are the form in which we can apply a numerical ODE solver to solve both IVPs and BVPs
- ... but BVPs generally require additional iteration
why IVP are *better* problems than BVPs

- IVPs with well-behaved parts do have unique solutions
- we say they are “well-posed”; specifically:
- **Theorem.** Consider the system of ODEs

\[y = f(t, y), \quad (3) \]

where \(y(t) = (y_1(t), \ldots, y_d(t)) \) and \(f = (f_1, \ldots, f_d) \) are vector-valued functions. If \(f \) is continuous for \(t \) in an interval around \(t_0 \) and for \(y \) in some region around \(y_0 \), and if \(\partial f_i / \partial y_j \) is continuous for the same inputs and for all \(i \) and \(j \), then the IVP consisting of (3) and \(y(t_0) = y_0 \) has a unique solution \(y(t) \) for at least some small interval \(t_0 - \epsilon < t < t_0 + \epsilon \) for some \(\epsilon > 0 \).

- given comments on last slide, the theorem covers IVPs for 2nd-order scalar ODEs
Warning about apparently-easy BVPs

Example 3: ODE BVP. Find $y(x)$ if

$$y'' + \pi^2 y = 0, \quad y(0) = 1, \quad y(1) = 0$$

- This turns out to be impossible . . . there is no such $y(x)$.
- In fact, the general solution to the ODE is

$$y(x) = c_1 \cos(\pi x) + c_2 \sin(\pi x)$$

so the first boundary condition implies $c_1 = 1$ (because $\sin(0) = 0$).
- . . . but then the second condition says

 $$0 = y(1) = -1 + c_2 \sin(\pi)$$

and this has no solution because $\sin(\pi) = 0$.
- This is a constant-coefficient problem for which all the “parts” are “well-behaved”; we can even easily write down the general solution!
two-point BVPs related to eigenvalue problems

- homogeneous linear two-point BVPs like

\[y'' + p(x)y' + q(x)y = \lambda y, \quad y(a) = 0, \quad y(b) = 0 \quad (4) \]

are called *Sturm-Liouville* problems

- they are analogous to eigenvalue problems “\(Ax = \lambda x \)” where the \(\lambda \) values *and* the vectors \(x \) are unknown
 - \(\lambda \) is an *eigenvalue*; there are finitely-many
 - \(x \neq 0 \) is an *eigenvector* associated to \(\lambda \)

- in the Sturm-Liouville problem (4), the “matrix” is the operator

\[A = \frac{d}{dx} + p(x) \frac{d}{dx} + q(x) \]

(though the operator \(A \) must somehow also include the homogeneous boundary conditions)

- in (4) we seek eigenvalues \(\lambda = \lambda_n \), which come in an infinite-but-countable list, and their associated eigenfunctions \(y = y_n(x) \)

- Sturm-Liouville theory “explains” the impossible case on the previous slide . . . *but* this Sturm-Liouville thread will not be pursued further here . . .
Outline

1. classical IVPs and BVPs with by-hand solutions
2. a more serious example: a BVP for equilibrium heat
3. finite difference solution of two-point BVPs
4. shooting to solve two-point BVPs
5. a more serious example: solutions
6. exercises
an equilibrium heat example

- as noted in lecture and by Morton & Mayers, a PDE like this is a general description of heat flow in a rod:

\[\rho c \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(k(x) \frac{\partial u}{\partial x} \right) + r(x)u + s(x) \quad (5) \]

- recall that, roughly speaking, \(\rho \) is a density, \(c \) a specific heat, \(k \) a conductivity, \(r(x) \) a reaction coefficient (because \(r(x)u \) is the heat produced by a temperature-dependent chemical reaction, for example), and \(s(x) \) is an external (\(u \) independent) source of heat
an equilibrium heat example, cont

- **equilibrium** means no change in time; the equilibrium version of (5) is this:

\[0 = \frac{\partial}{\partial x} \left(k(x) \frac{\partial u}{\partial x} \right) + r(x)u + s(x) \]

- because we can use ordinary derivative notation, and slightly-rearrange, the equilibrium equation is an ODE:

\[(k(x)u')' + r(x)u = -s(x) \]

(6)

- let’s suppose the rod has length \(L \), and \(0 \leq x \leq L \)

- example boundary values are (i) insulation at the left end and (ii) pre-determined temperature at the right end:

\[u'(0) = 0, \quad u(L) = 0 \]

(7)
an equilibrium heat example, cont, cont

- some concrete, generally-non-constant choices in my example include $L = 3$ and:

$$k(x) = \frac{1}{2} \arctan(20(x - 1)) + 1,$$

$$r(x) = r_0 = \frac{1}{2}, \quad s(x) = e^{-(x-2)^2}$$
Two-point Boundary Value Problems: Numerical Approaches

Bueler

classical IVPs and BVPs

serious example

finite difference

shooting

serious example: solved

exercises

• code used to produce the previous picture

L = 3;
k = @(x) 0.5 * atan((x-1.0) * 20.0) + 1.0;
r0 = 0.5;
s = @(x) exp(-(x-2.0).^2);

J = 300;
dx = L / J;
x = 0:dx:L;
plot(x,k(x),x,r0*ones(size(x)),x,s(x))
grid on, xlabel x
legend('k(x)', 'r(x)=r_0', 's(x)')
summary of “serious example”

- we now have a non-constant-coefficient boundary value problem to solve:
 \[(k(x)u')' + r_0 u = -s(x), \quad u'(0) = 0, \quad u(3) = 0\]
 (8)

- \(u(x)\) represents the equilibrium distribution of temperature in a rod with these properties:
 - conductivity \(k(x)\): the first third \([0, 1]\) is a material with much lower conductivity than the last two-thirds \([2, 3]\)
 - reaction rate \(r_0 > 0\): constant rate of linear-in-temperature heating
 - source term \(s(x)\): an external heat source concentrated around \(x = 2\)

- worth drawing a picture of the rod and its surroundings: shading for \(k(x)\), candles for \(s(x)\), insulated end, refrigerated end, ...

- a concrete Question: what is \(u(0)\), the temperature at the left end?
plan from here

1. introduce finite difference approach on really-easy “toy” two-point BVP
2. introduce shooting method on same toy problem
3. demonstrate both approaches on “serious problem”
Outline

1. classical IVPs and BVPs with by-hand solutions
2. a more serious example: a BVP for equilibrium heat
3. finite difference solution of two-point BVPs
4. shooting to solve two-point BVPs
5. a more serious example: solutions
6. exercises
finite differences

- finite difference methods for two-point BVPs generalize to PDEs . . . as demonstrated in the rest of Math 615!
- but here we are just solving ODEs

- recall I showed this using a Taylor’s-theorem-with-remainder argument:

\[
\frac{f(x - h) - 2f(x) + f(x + h)}{h^2} = f''(x) + \frac{f^{(4)}(\nu)}{12} h^2
\]
toy example problem

- consider this easy BVP:

 \[y'' = 12x^2, \quad y(0) = 0, \quad y(1) = 0 \]

- it has exact solution \(y(x) = x^4 - x \)

- ... please check my last claim

- ... and be sure you could construct this exact solution by integrating
toy example: approximated by finite differences

- cut up the interval $[0, 1]$ into J subintervals:
 \[\Delta x = \frac{1}{J} \]
 \[x_j = 0 + (j - 1)\Delta x \quad (j = 1, \ldots, J + 1) \]
- note that my indices run from $j = 1$ to $j = J + 1$
- let Y_j be the approximation to $y(x_j)$
- for each of $j = 2, \ldots, J$ we approximate \(y'' = 12x^2 \)
 by
 \[\frac{Y_{j-1} - 2Y_j + Y_{j+1}}{\Delta x^2} = 12x_j^2 \]
- the boundary conditions are: $Y_1 = 0$, $Y_{J+1} = 0$
so now we have a linear system of $J + 1$ equations in $J + 1$ unknowns:

\[
\begin{align*}
Y_1 &= 0 \\
Y_1 - 2Y_2 + Y_3 &= 12\Delta x^2 x_2^2 \\
Y_2 - 2Y_3 + Y_4 &= 12\Delta x^2 x_3^2 \\
&\vdots & \vdots \\
Y_{J-1} - 2Y_J + Y_{J+1} &= 12\Delta x^2 x_J^2 \\
Y_{J+1} &= 0
\end{align*}
\]
toy example: as matrix problem

- this is a matrix problem:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & \ldots & 0 \\
1 & -2 & 1 & 0 & \ldots & 0 \\
0 & 1 & -2 & 1 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 1 & -2 & 1 \\
0 & \ldots & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
Y_1 \\
Y_2 \\
Y_3 \\
\vdots \\
Y_J \\
Y_{J+1}
\end{bmatrix}
= \begin{bmatrix}
0 \\
12\Delta x^2 x_2^2 \\
12\Delta x^2 x_3^2 \\
\vdots \\
12\Delta x^2 x_J^2 \\
0
\end{bmatrix}
\]

- i.e.

\[AY = b\]
toy example: as matrix problem in OCTAVE

- the matrix A is \textit{tridiagonal}
- which is usually true of finite difference methods for two-point boundary value problems for second order ODEs
- A has lots of zero entries, so in MATLAB/OCTAVE we store it as a “sparse” matrix
- this means that the \textit{locations} of nonzero entries, and the matrix entries at those locations, are stored; this saves space
- also there are “expert systems” in MATLAB/OCTAVE which recognize sparsity and then try to exploit it to speed up matrix/vector operations
- practical MATLAB/OCTAVE advice: learn how to use \texttt{spy} and \texttt{full} to see these sparse matrix structures
toy example: as matrix problem in OCTAVE, cont

- setting up the matrix problem looks like:

  ```matlab
  J = 10; dx = 1/J; x = (0:dx:1)';
  b = zeros(J+1,1);
  b(2:J) = 12 * dx^2 * x(2:J).^2;
  A = sparse(J+1,J+1);
  A(1,1) = 1.0; A(J+1,J+1) = 1.0;
  for j=2:J
    A(j,[j-1, j, j+1]) = [1, -2, 1];
  end
  
  ```

- solving the matrix problem looks like:

  ```matlab
  Y = A \ b; % solve A Y = b
  
  ```

- plot on next page from

  ```matlab
  % also get exact soln on fine grid:
  xf = 0:1/1000:1; yexact = xf.^4 - xf;
  plot(x,Y,'o','markersize',12,xf,yexact)
  grid on, xlabel x, legend('finite diff','exact')
  ```
toy example: as matrix problem in OCTAVE, cont, cont

- gives result which is better than we have any reason to expect:

![Graph showing finite difference and exact solutions]

- gives result which is better than we have any reason to expect:
toy example with finite differences: brief analysis

regarding how the result on the previous slide can be so suspiciously nice:

- recall that the exact solution is $y(x) = x^4 - x$
- recall we had

$$\frac{f(x - h) - 2f(x) + f(x + h)}{h^2} = f''(x) + \frac{f^{(4)}(\nu)}{12} h^2$$

- applied to $f(x) = y(x)$, for which $y^{(4)}(x) = 24$ is constant, we see that the finite difference approximation to the second derivative in the ODE $y'' = 12x^2$ has error at most

$$\frac{y^{(4)}(\nu)}{12} \Delta x^2 = \frac{24}{12} (0.1)^2 = 0.02$$

because $\Delta x = 0.1$

- this is a rare case where the local truncation error is a known constant . . . and fairly small
toy example with finite differences: brief analysis, cont

- let $e_j = Y_j - y(x_j)$
- by subtraction,
 $$\frac{e_{j-1} - 2e_j + e_{j+1}}{\Delta x^2} = 0.02$$
 and $e_0 = e_{J+1} = 0$
- so (after bit of not-too-hard thought)
 $$e_j = 0.01x_j(x_j - 1)$$
- so
 $$\max_j |Y_j - y(x_j)| = \max_j |e_j| = 0.0025$$
- which explains why picture a few slides back was good ... but showed slight errors close to screen resolution
Outline

1. classical IVPs and BVPs with by-hand solutions
2. a more serious example: a BVP for equilibrium heat
3. finite difference solution of two-point BVPs
4. shooting to solve two-point BVPs
5. a more serious example: solutions
6. exercises
toy example problem again: shooting

- recall this “toy” ODE BVP:

\[y'' = 12x^2, \quad y(0) = 0, \quad y(1) = 0 \]

(which has exact solution \(y(x) = x^4 - x \))

- this time we think: *if only it were an ODE IVP then we could apply a numerical ODE solver like ode45 or lsode*

- indeed, this ODE IVP

\[w'' = 12x^2, \quad w(0) = 0, \quad w'(0) = A \]

can be solved by a numerical ODE solver, for any \(A \)

- solving this ODE IVP involves “aiming” by guessing an initial slope \(w'(0) = A \)

- … and “hitting the target” is getting the desired boundary value \(w(1) = 0 \) correct, so that \(y(x) = w(x) \) in that case
toy example shooting, cont

- for illustrating the method, I’ll skip the use of a numerical ODE solver because the ODE IVP

\[w'' = 12x^2, \quad w(0) = 0, \quad w'(0) = A \]

has a solution we can get by-hand:

\[w(x) = x^4 + Ax \]

- plotting for \(A = -2.5, -1.5, -0.5, 0.5, 1.5 \) gives this figure:
toy example shooting, cont, cont

- we have “aimed” (by choosing A) and “shot” five times
- “shot” = (computed the solution to an ODE IVP); generally this would be solving the ODE IVP numerically
- we missed every time
- but we have bracketed the correct right-hand boundary condition $y(1) = 0$ with the two values $A = -1.5$ and $A = -0.5$
- a numerical equation solver can refine the search to converge to the correct A value . . . which we know would by $A = -1$ in this case
- . . . the last idea is best illustrated by example
shooting: solving the boundary condition equation

- recall our ODE BVP

\[y'' = 12x^2, \quad y(0) = 0, \quad y(1) = 0 \]

is replaced by this ODE IVP when “shooting”:

\[w'' = 12x^2, \quad w(0) = 0, \quad w'(0) = A \quad (9) \]

- the \(x = 1 \) endpoint value of \(w(x) \) is a function of \(A \):

\[F(A) = \left(w(1), \text{ where } w \text{ solves (9)} \right) \]

- and so we solve this equation because we want \(y(1) = 0 \):

\[F(A) = 0 \]

- in this easy problem, \(w(x) = x^4 + Ax \)
- so we solve \(F(A) = 1 + A = 0 \) and get \(A = -1 \)
- generally we solve \(F(A) = 0 \) numerically, e.g. by the \textit{bisection} or \textit{secant} methods
shooting: general strategy for two-point ODE BVPs

- identify one end of the interval \(x = b \) as the target
- at the other end \(x = a \), identify some additional initial conditions which would give a well-posed ODE IVP
- for various guesses of those additional initial conditions, “shoot” by solving the corresponding ODE IVP from \(x = a \) to \(x = b \)
- ask whether you “hit the target” by asking whether the boundary conditions at \(x = b \) are satisfied
- automate the adjustment process by using an equation solver (e.g. bisection or secant method) on the equation that says “the discrepancy between the solution of the ODE IVP at \(x = b \) and the desired boundary conditions at \(x = b \), as a function of the additional initial conditions, should be zero: \(F(A) = 0 \)”
Outline

1. classical IVPs and BVPs with by-hand solutions
2. a more serious example: a BVP for equilibrium heat
3. finite difference solution of two-point BVPs
4. shooting to solve two-point BVPs
5. a more serious example: solutions
6. exercises
recall the serious example

- recall the “serious” non-constant-coefficient BVP:
 \[
 (k(x)u')' + r_0 u = -s(x), \quad u'(0) = 0, \quad u(3) = 0, \quad (10)
 \]

- \(u(x)\) is the equilibrium temperature in a rod
- the conductivity \(k(x)\) has a big jump at \(x = 1\) and the heat source \(s(x)\) is concentrated at \(x = 2\):
finite differences: need staggered grid

- finite difference approach first
- as before: \(J \) subintervals, \(\Delta x = 1/J \), and
 \[
 x_j = (j - 1)\Delta x \quad \text{for } j = 1, \ldots, J + 1
 \]
- let \(U_j \) be our finite diff. approx. to \(u(x_j) \)
- let \(k_j = k(x_j) \) and \(s_j = s(x_j) \); we know these exactly
- note: if \(q(x) = -k(x)u'(x) \)—think Fourier!—then we are solving
 \[
 -q' + r_0 u = -s(x)
 \]
- the finite difference version looks like
 \[
 -q_{j+1/2} - q_{j-1/2} \Delta x + r_0 U_j = -s(x_j)
 \]
- or
 \[
 k(x_{j+1/2}) \frac{U_{j+1} - U_j}{\Delta x} - k(x_{j-1/2}) \frac{U_j - U_{j-1}}{\Delta x} \Delta x + r_0 U_j = -s(x_j)
 \]
finite differences: need staggered grid, cont

- ... or (just notation)

\[
\frac{k_{j+\frac{1}{2}}(U_{j+1} - U_j) - k_{j-\frac{1}{2}}(U_j - U_{j-1})}{\Delta x^2} + r_0 U_j = -s_j
\]

- or (clear denominators)

\[
k_{j+\frac{1}{2}}(U_{j+1} - U_j) - k_{j-\frac{1}{2}}(U_j - U_{j-1}) + r_0 \Delta x^2 U_j = -s_j \Delta x^2
\]

- or

\[
k_{j-\frac{1}{2}} U_{j-1} - \left(k_{j-\frac{1}{2}} + k_{j+\frac{1}{2}} - r_0 \Delta x^2\right) U_j + k_{j+\frac{1}{2}} U_{j+1} = -s_j \Delta x^2
\]

- like the “toy” example earlier, this last form is a tridiagonal matrix equation \(AU = b \)

- note we actually evaluate the conductivity \(k(x) \), and the flux \(q \), on the staggered grid

- the deeper reason why we use the staggered grid will be revealed later in class ...
finite differences: remember the boundary conditions

- recall we have boundary condition \(u'(0) = 0 \)
- approximate this by

\[
\frac{U_2 - U_1}{\Delta x} = 0
\]

- or

\[-U_1 + U_2 = 0\]

- we will see there is a more-accurate way later . . .
- also we have \(u(L) = 0 \) so

\[U_{J+1} = 0\]
finite differences for the “serious problem”

- now for an actual code: see `varheatFD.m` online
- the ODE setup:

```matlab
L = 3;
k = @(x) 0.5 * atan((x-1.0) * 20.0) + 1.0;
s = @(x) exp(-(x-2.0).^2);
r0 = 0.5;

dx = L / J;
x = (0:dx:L)'; % regular grid
xstag = ((dx/2):dx:L-(dx/2))'; % staggered grid
kstag = k(xstag); % k(x) on staggered grid

% right side is J+1 length column vector
b = [0;
    - dx^2 * s(x(2:J));
    0];

% matrix is tridiagonal
A = sparse(J+1,J+1);
A(1,[1 2]) = [-1.0 1.0];
for j=1:J-1
    A(j+1,j) = kstag(j);
    A(j+1,j+1) = - kstag(j) - kstag(j+1) + r0 * dx^2;
    A(j+1,j+2) = kstag(j+1);
end
A(J+1,J+1) = 1.0;
```
finite differences for the “serious problem”, cont

- it is good to use \(\text{spy}(A) \) at this point to see the matrix structure; this is the \(J = 10 \) case
finite differences for the “serious problem”, cont, cont

- the matrix solve:
 \[U = A \ \backslash \ b; \quad \text{% soln is J+1 column vector} \]

- the plot details:
  ```matlab
  figure(1)
  plot(x,k(x),'r',x,s(x),'b',...
       x,U','g*','markersize',3)
  grid on, xlabel x
  legend('k(x)','s(x)','solution U_j')
  ```
finite difference solution to “serious problem”

• the picture when $J = 60$:

![Graph showing finite difference solution for a problem with $J = 60$. The graph displays a plot of $u(0) = -5.666658$.](image)
finite difference solution to “serious problem”, cont

- recall our concrete goal was to estimate $u(0)$
- clearly we should try different J values to estimate:

<table>
<thead>
<tr>
<th>J</th>
<th>estimate of $u(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>-13.86507</td>
</tr>
<tr>
<td>20</td>
<td>-7.20263</td>
</tr>
<tr>
<td>60</td>
<td>-5.66666</td>
</tr>
<tr>
<td>200</td>
<td>-5.27443</td>
</tr>
<tr>
<td>1000</td>
<td>-5.15199</td>
</tr>
<tr>
<td>4000</td>
<td>-5.12965</td>
</tr>
</tbody>
</table>

- this suggests that $u(0) \approx -5.13$
- *How do we know how wrong we are?*
shooting for the “serious problem”

- shooting is implemented these codes online:
 - `varheatSHOOT.m`: OCTAVE version using `lsode`
 - `varheatSHOOTmat.m`: MATLAB version using `ode45`

- the setup (OCTAVE version):

  ```octave
  L = 3;
k = @(x) 0.5 * atan((x-1.0) * 20.0) + 1.0;
s = @(x) exp(-(x-2.0).^2);
r0 = 0.5;

  % ODE Y’ = G(Y,x) is described by this right-hand side:
  G = @(Y,x) [- Y(2) / k(x); % Y(1) = u
                  r0 * Y(1) + s(x)]; % Y(2) = q

  % bracket unknown u(0)
a = -10.0; % produces u(3) which is too high
b = 0.0; % ... u(3) which is too low
  ```
shooting for the “serious problem”, cont

- the \textit{bisection} implementation (OCTAVE version), which
 starts from initial bracket \([a, b] = [-10.0, 0.0]\):

\begin{verbatim}
N = 100;
for n = 1:N
 fprintf(‘.’)
 c = (a+b)/2;
 % evaluate F(c) = (estimate of u(3) using u(0)=c)
 Y = lsode(G,[c; 0.0],[0.0 3.0]);
 F = Y(2,1);
 if abs(F) < 1e-12
 break % we are done
 elseif F >= 0.0
 a = c;
 else
 b = c;
 end
end
\end{verbatim}
shooting for the “serious problem”, cont

- the finish:

```matlab
% redo to get final version on a grid for plot
x = 0:0.05:3.0;
Y = lsode(G,[c; 0.0],x);
u = Y(:,1)';
qu = Y(:,2)';
figure(2)
plot(x,k(x),'r',x,s(x),'b',x,u,'g*',x,q,'k')
grid on, xlabel x
legend('k(x)','s(x)','u(x)','q(x)')
```
shooting solution to “serious problem”

- the picture:

```
result of SHOOTING:  u(0) = −5.144434
```

- default use of `lsode` gives estimate $u(0) = −5.14443$

- *How do we know how wrong we are?*
minimal conclusion

- finite difference and shooting methods give comparable solutions to this “serious problem”
- closer inspection of the programs above will help understand the methods
- better understanding will also follow from doing the exercises 1 through 5 on the last three slides
- ... which forms Assignment # 3
Outline

1. classical IVPs and BVPs with by-hand solutions
2. a more serious example: a BVP for equilibrium heat
3. finite difference solution of two-point BVPs
4. shooting to solve two-point BVPs
5. a more serious example: solutions
6. exercises
exercises

1. Solve by-hand this ODE BVP to find $y(x)$:

 $$y'' + 2y' + 2y = 0, \quad y(0) = 1, \quad y(1) = 0.$$

2. Recall Example 3, an impossible-to-solve ODE BVP. Nonetheless there are some values of A in the following problem which allow a solution: find $y(x)$ if

 $$y'' + \pi^2 y = 0, \quad y(0) = 1, \quad y(1) = A.$$

 What values of A are allowed? For an allowed value of A, how many solutions are there?

3. Equation (6) has non-constant coefficients, and essentially it cannot be solved exactly by hand. To develop some sense of the effect of the source term $s(x)$, solve by-hand this ODE BVP

 $$(k_0 u')' = -s(x), \quad u'(0) = 0, \quad u(L) = 0,$$

 merely assuming the source is quadratic ($s(x) = ax^2 + bx + c$) and the conductivity is constant ($k_0 > 0$). Compute by-hand $u(0)$. How does the solution $u(x)$ depend on $s(x)$? (For example, how does u depend on the sign, values, slope, or concavity of $s(x)$?)
4 Apply the finite difference method to solve this ODE BVP:

\[y'' + \sin(5x)y = x^3 - x, \quad y(0) = 0, \quad y(1) = 0. \]

In particular, use \(J = 10, \Delta x = 1/J \), and \(x_j = j\Delta x \) for \(j = 0, \ldots, J \). Construct the system

\[A \mathbf{y} = \mathbf{b} \]

where \(A \) is a \((J+1) \times (J+1)\) matrix, \(\mathbf{y} = \{ Y_j \} \) approximates the unknowns \(\{ y(x_j) \} \), and \(\mathbf{b} \) contains the right-side function “\(x^3 - x \)” in the ODE. Arrange things so that the first equation in the system represents the boundary condition “\(y(0) = 0 \)” and the last equation the condition “\(y(1) = 0 \)”. The remaining equations in the system will each hold finite difference approximations of the ODE. Show me your matrix \(A \) in a non-wasteful way. Solve the system to find \(\mathbf{y} \), and plot it appropriately. Also write a few sentences addressing how to know qualitatively and quantitatively the degree to which your answer is a good approximation.
Consider the nonlinear ODE BVP

\[u'' + u^3 = 0, \quad u(0) = 1, \quad u(1) = 0. \]

This problem is well-suited to the shooting method. Specifically, write a MOP program that uses an ODE solver to solve the following ODE IVP

\[u'' + u^3 = 0, \quad u(0) = 1, \quad u'(0) = A \]

for each of the eleven values \(A = -5, -4, \ldots, 4, 5 \). Plot all eleven solutions, and identify on the plot the \(A \) value for each curve. Which two \(A \) values make the computed value \(u(1) \) bracket the desired value (boundary condition) “\(u(1) = 0 \)”?

(With this information in hand you could make a program like varheatSHOOT.m, which uses bisection to converge to an \(A \) value so that \(u(1) \approx 0 \) to many-digit-accuracy.)