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abbreviations

• ODE = ordinary differential equation
• PDE = partial differential equation
• IVP = initial value problem
• BVP = boundary value problem
• MOP = MATLAB or OCTAVE or PYLAB
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classical ODE problems: IVP vs BVP

Example 1: ODE IVP. find y(x) if

y ′′ + 2y ′ − 8y = 0, y(0) = 1, y ′(0) = 0

Example 2: ODE BVP. find y(x) if

y ′′ + 2y ′ − 8y = 0, y(0) = 1, y(1) = 0
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classical ODE problems: IVP vs BVP

Example 1: ODE IVP. find y(x) if

y ′′ + 2y ′ − 8y = 0, y(0) = 1, y ′(0) = 0

Example 2: ODE BVP. find y(x) if

y ′′ + 2y ′ − 8y = 0, y(0) = 1, y(1) = 0

• both problems can be solved by hand
• in fact, the ODE has constant coefficients so we can find

characteristic polynomial and general solution . . . like this:
if y(x) = erx then r2 + 2r − 8 = (r + 4)(r − 2) = 0 so

y(x) = c1e−4x + c2e2x

• Example 1 gives system c1 + c2 = 1,−4c1 + 2c2 = 0 for
coefficients; get solution y(x) = (1/3)e−4x + (2/3)e2x

• Example 2 gives system c1 + c2 = 1,e−4c1 + e2c2 = 0 for
coefficients; get solution
y(x) = (1− e−6)−1e−4x + (1− e6)−1e2x
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just for practice: viewing solns with MATLAB/OCTAVE

x = 0:.001:1;
y1 = exp(-4*x); y2 = exp(2*x);
yIVP = (1/3)*y1 + (2/3)*y2;
yBVP = (1/(1-exp(-6)))*y1 + (1/(1-exp(6)))*y2;
plot(x,yIVP,x,yBVP), grid on
legend(’IVP soln’,’BVP soln’)
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obvious name: “two-point BVP”

again:

Example 2: ODE BVP. find y(x) if

y ′′ + 2y ′ − 8y = 0, y(0) = 1, y(1) = 0

• Example 2 is called a “two-point BVP” because the solution
is known at two points (duh!)

• a two-point BVP includes an ODE and the value of the
solution at two different locations

• the ODE can be of any order, as long as it is at least two,
because first-order ODEs cannot satisfy two conditions
(generally)

• but there is no guarantee that a two-point BVP can be
solved (see below), even though that is the usual case

• we will also be considering boundary value problems for
PDEs in this course (i.e. problems including no initial
values); these are “∞-point BVPs” I suppose
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recall: a standard manipulation of a 2nd order ODE
Consider the general linear 2nd-order ODE:

y ′′ + p(x)y ′ + q(x)y = r(x) (1)

Also consider the (almost-completely) general 2nd-order ODE:

y ′′ = f (x , y , y ′) (2)

• these can be written as systems of coupled 1st-order ODEs
• in fact, equation (1) is equivalent to(

y ′

v ′

)
=

(
v

−p(x)v − q(x)y + r(x)

)
• and equation (2) is equivalent to(

y ′

v ′

)
=

(
v

f (x , y , v)

)
• first order systems are the form in which we can apply a

numerical ODE solver to solve both IVPs and BVPs
• . . . but BVPs generally require additional iteration
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why IVP are better problems than BVPs

• IVPs with well-behaved parts do have unique solutions
• we say they are “well-posed”; specifically:
• Theorem. Consider the system of ODEs

y = f(t ,y), (3)

where y(t) = (y1(t), . . . , yd (t)) and f = (f1, . . . , fd ) are
vector-valued functions. If f is continuous for t in an interval
around t0 and for y in some region around y0, and if ∂fi/∂yj
is continuous for the same inputs and for all i and j , then
the IVP consisting of (3) and y(t0) = y0 has a unique
solution y(t) for at least some small interval
t0 − ε < t < t0 + ε for some ε > 0.

• given comments on last slide, the theorem covers IVPs for
2nd-order scalar ODEs
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warning about apparently-easy BVPs

Example 3: ODE BVP. find y(x) if

y ′′ + π2y = 0, y(0) = 1, y(1) = 0

• this turns out to be impossible . . . there is no such y(x)

• in fact, the general solution to the ODE is

y(x) = c1 cos(πx) + c2 sin(πx)

so the first boundary condition implies c1 = 1 (because
sin(0) = 0)

• . . . but then the second condition says

“ 0 = y(1) = −1 + c2 sin(π) ”

and this has no solution because sin(π) = 0
• this is a constant-coefficient problem for which all the

“parts” are “well-behaved”; we can even easily write down
the general solution!
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two-point BVPs related to eigenvalue problems
• homogeneous linear two-point BVPs like

y ′′ + p(x)y ′ + q(x)y = λy , y(a) = 0, y(b) = 0 (4)

are called Sturm-Liouville problems
• they are analogous to eigenvalue problems “Ax = λx”

where the λ values and the vectors x are unknown
• λ is an eigenvalue; there are finitely-many
• x 6= 0 is an eigenvector associated to λ

• in the Sturm-Liouville problem (4), the “matrix” is the
operator

A =
d
dx

+ p(x)
d
dx

+ q(x)

(though the operator A must somehow also include the
homogeneous boundary conditions)

• in (4) we seek eigenvalues λ = λn, which come in an
infinite-but-countable list, and their associated
eigenfunctions y = yn(x)

• Sturm-Liouville theory “explains” the impossible case on
the previous slide . . . but this Sturm-Liouville thread will not
be pursued further here . . .
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an equilibrium heat example

• as noted in lecture and by Morton & Mayers, a PDE like
this is a general description of heat flow in a rod:

ρc
∂u
∂t

=
∂

∂x

(
k(x)

∂u
∂x

)
+ r(x)u + s(x) (5)

• recall that, roughly speaking, ρ is a density, c a specific
heat, k a conductivity, r(x) a reaction coefficient (because
r(x)u is the heat produced by a temperature-dependent
chemical reaction, for example), and s(x) is an external (u
independent) source of heat
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an equilibrium heat example, cont

• equilibrium means no change in time; the equilibrium
version of (5) is this:

0 =
∂

∂x

(
k(x)

∂u
∂x

)
+ r(x)u + s(x)

• because we can use ordinary derivative notation, and
slightly-rearrange, the equilibrium eqaution is an ODE:

(k(x)u′)′ + r(x)u = −s(x) (6)

• let’s suppose the rod has length L, and 0 ≤ x ≤ L
• example boundary values are (i) insulation at the left end

and (ii) pre-determined temperature at the right end:

u′(0) = 0, u(L) = 0 (7)
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an equilibrium heat example, cont, cont
• some concrete, generally-non-constant choices in my

example include L = 3 and:

k(x) =
1
2

arctan(20(x − 1)) + 1,

r(x) = r0 =
1
2
, s(x) = e−(x−2)2
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example, as code

• code used to produce the previous picture

L = 3;
k = @(x) 0.5 * atan((x-1.0) * 20.0) + 1.0;
r0 = 0.5;
s = @(x) exp(-(x-2.0).^2);

J = 300;
dx = L / J;
x = 0:dx:L;
plot(x,k(x),x,r0*ones(size(x)),x,s(x))
grid on, xlabel x
legend(’k(x)’,’r(x)=r_0’,’s(x)’)
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summary of “serious example”

• we now have a non-constant-coefficient boundary value
problem to solve:

(k(x)u′)′ + r0u = −s(x), u′(0) = 0, u(3) = 0 (8)

• u(x) represents the equilibrium distribution of temperature
in a rod with these properties:

• conductivity k(x): the first third [0, 1] is a material with much
lower conductivity than the last two-thirds [2, 3]

• reaction rate r0 > 0: constant rate of linear-in-temperature
heating

• source term s(x): an external heat source concentrated
around x = 2

• worth drawing a picture of the rod and its surroundings:
shading for k(x), candles for s(x), insulated end,
refrigerated end, . . .

• a concrete Question: what is u(0), the temperature at the
left end?
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plan from here

1 introduce finite difference approach on really-easy “toy”
two-point BVP

2 introduce shooting method on same toy problem
3 demonstrate both approaches on “serious problem”



Two-point Boundary
Value Problems:

Numerical
Approaches

Bueler

classical IVPs and
BVPs

serious example

finite difference

shooting

serious example:
solved

exercises

1.19

Outline

1 classical IVPs and BVPs with by-hand solutions

2 a more serious example: a BVP for equilibrium heat

3 finite difference solution of two-point BVPs
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finite differences

• finite difference methods for two-point BVPs generalize to
PDEs . . . as demonstrated in the rest of Math 615!

• but here we are just solving ODEs

• recall I showed this using a
Taylor’s-theorem-with-remainder argument:

f (x − h)− 2f (x) + f (x + h)

h2 = f ′′(x) +
f (4)(ν)

12
h2
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toy example problem

• consider this easy BVP:

y ′′ = 12x2, y(0) = 0, y(1) = 0

• it has exact solution y(x) = x4 − x
• . . . please check my last claim
• . . . and be sure you could construct this exact solution by

integrating
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toy example: approximated by finite differences

• cut up the interval [0,1] into J subintervals:

∆x = 1/J

xj = 0 + (j − 1)∆x (j = 1, . . . , J + 1)

• note that my indices run from j = 1 to j = J + 1
• let Yj be the approximation to y(xj )

• for each of j = 2, . . . , J we approximate

y ′′ = 12x2

by
Yj−1 − 2Yj + Yj+1

∆x2 = 12x2
j

• the boundary conditions are: Y1 = 0, YJ+1 = 0
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toy example: approximated by finite differences, cont

• so now we have a linear system of J + 1 equations in J + 1
unknowns:

Y1 = 0

Y1 − 2Y2 + Y3 = 12∆x2x2
2

Y2 − 2Y3 + Y4 = 12∆x2x2
3

...
...

YJ−1 − 2YJ + YJ+1 = 12∆x2x2
J

YJ+1 = 0
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toy example: as matrix problem

• this is a matrix problem:

1 0 0 0 . . . 0
1 −2 1 0 . . . 0
0 1 −2 1 0
...

. . .
1 −2 1

0 . . . 0 0 1





Y1
Y2
Y3
...

YJ
YJ+1


=



0
12∆x2x2

2
12∆x2x2

3
...

12∆x2x2
J

0



• i.e.
A Y = b
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toy example: as matrix problem in OCTAVE

• the matrix A is tridiagonal
• which is usually true of finite difference methods for

two-point boundary value problems for second order ODEs
• A has lots of zero entries, so in MATLAB/OCTAVE we store it

as a “sparse” matrix
• this means that the locations of nonzero entries, and the

matrix entries at those locations, are stored; this saves
space

• also there are “expert systems” in MATLAB/OCTAVE which
recognize sparsity and then try to exploit it to speed up
matrix/vector operations

• practical MATLAB/OCTAVE advice: learn how to use spy
and full to see these sparse matrix structures
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toy example: as matrix problem in OCTAVE, cont

• setting up the matrix problem looks like:
J = 10; dx = 1/J; x = (0:dx:1)’;
b = zeros(J+1,1);
b(2:J) = 12 * dx^2 * x(2:J).^2;
A = sparse(J+1,J+1);
A(1,1) = 1.0; A(J+1,J+1) = 1.0;
for j=2:J
A(j,[j-1, j, j+1]) = [1, -2, 1];

end

• solving the matrix problem looks like:
Y = A \ b; % solve A Y = b

• plot on next page from
% also get exact soln on fine grid:
xf = 0:1/1000:1; yexact = xf.^4 - xf;
plot(x,Y,’o’,’markersize’,12,xf,yexact)
grid on, xlabel x, legend(’finite diff’,’exact’)
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toy example: as matrix problem in OCTAVE, cont, cont

• gives result which is better than we have any reason to
expect:
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toy example with finite differences: brief analysis

regarding how the result on the previous slide can be so
suspiciously nice:
• recall that the exact solution is y(x) = x4 − x
• recall we had

f (x − h)− 2f (x) + f (x + h)

h2 = f ′′(x) +
f (4)(ν)

12
h2

• applied to f (x) = y(x), for which y (4)(x) = 24 is constant,
we see that the finite difference approximation to the
second derivative in the ODE y ′′ = 12x2 has error at most

y (4)(ν)

12
∆x2 =

24
12

(0.1)2 = 0.02

because ∆x = 0.1
• this is a rare case where the local truncation error is a

known constant . . . and fairly small
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toy example with finite differences: brief analysis, cont

• let ej = Yj − y(xj )

• by subtraction,

ej−1 − 2ej + ej+1

∆x2 = 0.02

and e0 = eJ+1 = 0
• so (after bit of not-too-hard thought)

ej = 0.01xj (xj − 1)

• so
max

j
|Yj − y(xj )| = max

j
|ej | = 0.0025

• which explains why picture a few slides back was good
. . . but showed slight errors close to screen resolution
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toy example problem again: shooting

• recall this “toy” ODE BVP:

y ′′ = 12x2, y(0) = 0, y(1) = 0

(which has exact solution y(x) = x4 − x)
• this time we think: if only it were an ODE IVP then we could

apply a numerical ODE solver like ode45 or lsode
• indeed, this ODE IVP

w ′′ = 12x2, w(0) = 0, w ′(0) = A

can be solved by a numerical ODE solver, for any A
• solving this ODE IVP involves “aiming” by guessing an

initial slope w ′(0) = A
• . . . and “hitting the target” is getting the desired boundary

value w(1) = 0 correct, so that y(x) = w(x) in that case
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toy example shooting, cont
• for illustrating the method, I’ll skip the use of a numerical

ODE solver because the ODE IVP

w ′′ = 12x2, w(0) = 0, w ′(0) = A

has a solution we can get by-hand:

w(x) = x4 + Ax

• plotting for A = −2.5,−1.5,−0.5,0.5,1.5 gives this figure:
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toy example shooting, cont, cont

• we have “aimed” (by choosing A) and “shot” five times
• “shot” = (computed the solution to an ODE IVP); generally

this would be solving the ODE IVP numerically
• we missed every time
• but we have bracketed the correct right-hand boundary

condition y(1) = 0 with the two values A = −1.5 and
A = −0.5

• a numerical equation solver can refine the search to
converge to the correct A value . . . which we know would by
A = −1 in this case

• . . . the last idea is best illustrated by example



Two-point Boundary
Value Problems:

Numerical
Approaches

Bueler

classical IVPs and
BVPs

serious example

finite difference

shooting

serious example:
solved

exercises

1.34

shooting: solving the boundary condition equation

• recall our ODE BVP

y ′′ = 12x2, y(0) = 0, y(1) = 0

is replaced by this ODE IVP when “shooting”:

w ′′ = 12x2, w(0) = 0, w ′(0) = A (9)

• the x = 1 endpoint value of w(x) is a function of A:

F (A) =
(

w(1), where w solves (9)
)

• and so we solve this equation because we want y(1) = 0:

F (A) = 0

• in this easy problem, w(x) = x4 + Ax
• so we solve F (A) = 1 + A = 0 and get A = −1
• generally we solve F (A) = 0 numerically, e.g. by the

bisection or secant methods
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shooting: general strategy for two-point ODE BVPs

• identify one end of the interval x = b as the target
• at the other end x = a, identify some additional initial

conditions which would give a well-posed ODE IVP
• for various guesses of those additional initial conditions,

“shoot” by solving the corresponding ODE IVP from x = a
to x = b

• ask whether you “hit the target” by asking whether the
boundary conditions at x = b are satisfied

• automate the adjustment process by using an equation
solver (e.g. bisection or secant method) on the equation
that says “the discrepancy between the solution of the ODE
IVP at x = b and the desired boundary conditions at x = b,
as a function of the additional initial conditions, should be
zero: F (A) = 0”
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recall the serious example

• recall the “serious” non-constant-coefficient BVP:

(k(x)u′)′ + r0u = −s(x), u′(0) = 0, u(3) = 0, (10)

• u(x) is the equilibrium temperature in a rod
• the conductivity k(x) has a big jump at x = 1 and the heat

source s(x) is concentrated at x = 2:
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finite differences: need staggered grid

• finite difference approach first
• as before: J subintervals, ∆x = 1/J, and

xj = (j − 1)∆x for j = 1, . . . , J + 1

• let Uj be our finite diff. approx. to u(xj )

• let kj = k(xj ) and sj = s(xj ); we know these exactly
• note: if q(x) = −k(x)u′(x)—think Fourier!—then we are

solving
−q′ + r0u = −s(x)

• the finite difference version looks like

−
qj+1/2 − qj−1/2

∆x
+ r0Uj = −s(xj )

• or

k(xj+1/2)
Uj+1−Uj

∆x − k(xj−1/2)
Uj−Uj−1

∆x

∆x
+ r0Uj = −s(xj )
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finite differences: need staggered grid, cont

• . . . or (just notation)

kj+ 1
2
(Uj+1 − Uj )− kj− 1

2
(Uj − Uj−1)

∆x2 + r0Uj = −sj

• or (clear denominators)

kj+ 1
2
(Uj+1 − Uj )− kj− 1

2
(Uj − Uj−1) + r0∆x2Uj = −sj ∆x2

• or

kj− 1
2
Uj−1 −

(
kj− 1

2
+ kj+ 1

2
− r0∆x2

)
Uj + kj+ 1

2
Uj+1 = −sj ∆x2

• like the “toy” example earlier, this last form is a tridiagonal
matrix equation AU = b

• note we actually evaluate the conductivity k(x), and the
flux q, on the staggered grid

• the deeper reason why we use the staggered grid will be
revealed later in class . . .
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finite differences: remember the boundary conditions

• recall we have boundary condition u′(0) = 0
• approximate this by

U2 − U1

∆x
= 0

• or
−U1 + U2 = 0

• we will see there is a more-accurate way later . . .
• also we have u(L) = 0 so

UJ+1 = 0
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finite differences for the “serious problem”

• now for an actual code: see varheatFD.m online
• the ODE setup:

L = 3;
k = @(x) 0.5 * atan((x-1.0) * 20.0) + 1.0;
s = @(x) exp(-(x-2.0).^2);
r0 = 0.5;

dx = L / J;
x = (0:dx:L)’; % regular grid
xstag = ((dx/2):dx:L-(dx/2))’; % staggered grid
kstag = k(xstag); % k(x) on staggered grid

• the matrix problem setup:
% right side is J+1 length column vector
b = [0;

- dx^2 * s(x(2:J));
0];

% matrix is tridiagonal
A = sparse(J+1,J+1);
A(1,[1 2]) = [-1.0 1.0];
for j=1:J-1
A(j+1,j) = kstag(j);
A(j+1,j+1) = - kstag(j) - kstag(j+1) + r0 * dx^2;
A(j+1,j+2) = kstag(j+1);

end
A(J+1,J+1) = 1.0;
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finite differences for the “serious problem”, cont

• it is good to use “spy(A)” at this point to see the matrix
structure; this is the J = 10 case

0 2 4 6 8 10 12

0

2

4

6

8

10

12

nz = 30
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finite differences for the “serious problem”, cont, cont

• the matrix solve:
U = A \ b; % soln is J+1 column vector

• the plot details:
figure(1)
plot(x,k(x),’r’,x,s(x),’b’,...

x,U’,’g*’,’markersize’,3)
grid on, xlabel x
legend(’k(x)’,’s(x)’,’solution U_j’)
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finite difference solution to “serious problem”

• the picture when J = 60:

0 0.5 1 1.5 2 2.5 3
−6

−5

−4

−3

−2

−1

0

1

2

x

result of FINITE DIFFERENCES:  u(0) = −5.666658

 

 

k(x)

s(x)

solution U
j
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finite difference solution to “serious problem”, cont

• recall our concrete goal was to estimate u(0)

• clearly we should try different J values to estimate:

J estimate of u(0)
10 -13.86507
20 -7.20263
60 -5.66666
200 -5.27443
1000 -5.15199
4000 -5.12965

• this suggests that u(0) ≈ −5.13
• How do we know how wrong we are?
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shooting for the “serious problem”

• shooting is implemented these codes online:
• varheatSHOOT.m: OCTAVE version using lsode
• varheatSHOOTmat.m: MATLAB version using ode45

• the setup (OCTAVE version):
L = 3;
k = @(x) 0.5 * atan((x-1.0) * 20.0) + 1.0;
s = @(x) exp(-(x-2.0).^2);
r0 = 0.5;

% ODE Y’ = G(Y,x) is described by this right-hand side:
G = @(Y,x) [- Y(2) / k(x); % Y(1) = u

r0 * Y(1) + s(x)]; % Y(2) = q

% bracket unknown u(0)
a = -10.0; % produces u(3) which is too high
b = 0.0; % ... u(3) which is too low
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shooting for the “serious problem”, cont

• the bisection implementation (OCTAVE version), which
starts from initial bracket [a,b] = [−10.0,0.0]:

N = 100;
for n = 1:N
fprintf(’.’)
c = (a+b)/2;
% evaluate F(c) = (estimate of u(3) using u(0)=c)
Y = lsode(G,[c; 0.0],[0.0 3.0]);
F = Y(2,1);
if abs(F) < 1e-12
break % we are done

elseif F >= 0.0
a = c;

else
b = c;

end
end
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shooting for the “serious problem”, cont

• the finish:
% redo to get final version on a grid for plot
x = 0:0.05:3.0;
Y = lsode(G,[c; 0.0],x);
u = Y(:,1)’;
q = Y(:,2)’;
figure(2)
plot(x,k(x),’r’,x,s(x),’b’,x,u,’g*’,x,q,’k’)
grid on, xlabel x
legend(’k(x)’,’s(x)’,’u(x)’,’q(x)’)
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shooting solution to “serious problem”

• the picture:
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result of SHOOTING:  u(0) = −5.144434

 

 

k(x)

s(x)

u(x)

q(x)

• default use of lsode gives estimate u(0) = −5.14443
• How do we know how wrong we are?
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minimal conclusion

• finite difference and shooting methods give comparable
solutions to this “serious problem”

• closer inspection of the programs above will help
understand the methods

• better understanding will also follow from doing the
exercises 1 through 5 on the last three slides

• . . . which forms Assignment # 3
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Outline

1 classical IVPs and BVPs with by-hand solutions

2 a more serious example: a BVP for equilibrium heat

3 finite difference solution of two-point BVPs

4 shooting to solve two-point BVPs

5 a more serious example: solutions

6 exercises
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exercises

1 Solve by-hand this ODE BVP to find y(x):

y ′′ + 2y ′ + 2y = 0, y(0) = 1, y(1) = 0.

2 Recall Example 3, an impossible-to-solve ODE BVP. Nonetheless
there are some values of A in the following problem which allow a
solution: find y(x) if

y ′′ + π2y = 0, y(0) = 1, y(1) = A.

What values of A are allowed? For an allowed value of A, how
many solutions are there?

3 Equation (6) has non-constant coefficients, and essentially it
cannot be solved exactly by hand. To develop some sense of the
effect of the source term s(x), solve by-hand this ODE BVP`

k0u′´′
= −s(x), u′(0) = 0, u(L) = 0,

merely assuming the source is quadratic (s(x) = ax2 + bx + c)
and the conductivity is constant (k0 > 0). Compute by-hand u(0).
How does the solution u(x) depend on s(x)? (For example, how
does u depend on the sign, values, slope, or concavity of s(x)?)
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exercises, cont

4 Apply the finite difference method to solve this ODE BVP:

y ′′ + sin(5x)y = x3 − x , y(0) = 0, y(1) = 0.

In particular, use J = 10, ∆x = 1/J, and xj = j∆x for
j = 0, . . . , J. Construct the system

A y = b

where A is a (J + 1)× (J + 1) matrix, y = {Yj} approximates the
unknowns {y(xj )}, and b contains the right-side function “x3 − x”
in the ODE. Arrange things so that the first equation in the system
represents the boundary condition “y(0) = 0” and the last
equation the condition “y(1) = 0”. The remaining equations in the
system will each hold finite difference approximations of the ODE.
Show me your matrix A in a non-wasteful way. Solve the system
to find y, and plot it appropriately. Also write a few sentences
addressing how to know qualitatively and quantitatively the
degree to which your answer is a good approximation.
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exercises, cont, cont

5 (The goal of this problem is to understand shooting, though you
will not quite put all parts together . . . )
Consider the nonlinear ODE BVP

u′′ + u3 = 0, u(0) = 1, u(1) = 0.

This problem is well-suited to the shooting method. Specifically,
write a MOP program that uses an ODE solver to solve the
following ODE IVP

u′′ + u3 = 0, u(0) = 1, u′(0) = A

for each of the eleven values A = −5,−4, . . . , 4, 5. Plot all eleven
solutions, and identify on the plot1 the A value for each curve.
Which two A values make the computed value u(1) bracket the
desired value (boundary condition) “u(1) = 0”?
(With this information in hand you could make a program like
varheatSHOOT.m, which uses bisection to converge to an A
value so that u(1) ≈ 0 to many-digit-accuracy.)

1Possibly using the text command in MATLAB/OCTAVE.
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