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abbreviations

ODE = ordinary differential equation
PDE = partial differential equation
IVP = initial value problem

BVP = boundary value problem
MOP = MATLAB or OCTAVE or PYLAB
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EXampIe 1: ODE IVP. f|nd y(X) if serious example

finite difference

yl/ + 2y/ - 8y = 07 y(o) = 17 -y/(o) = O ::::dexample:
solved

exercises

Example 2: ODE BVP. find y(x) if

y'"+2y'—8y=0, y(0)=1, y(1)=0



classical ODE problems: IVP vs BVP Voo Problems: ”
Numerical

Example 1: ODE IVP. find y(x) if Approaches

Bueler
y'+2y'—8y=0, y(0)=1, y'(0)=0

Example 2: ODE BVP. find y(x) if _

serious example
y// + 2y/ _ 8y _ 07 y(O) — 17 y(1) _ O :::i::gference

serious example:

¢ both problems can be solved by hand solved

« in fact, the ODE has constant coefficients so we can find merases
characteristic polynomial and general solution . . . like this:
if y(x) =e*thenr?+2r-8=(r+4)(r—2)=0s0

y(x) = cre™™ + cpe®*

o Example 1 gives system ¢y + ¢ = 1,—4¢y +2¢, =0 for
coefficients; get solution y(x) = (1/3)e=* + (2/3)e**

e Example 2 gives system ¢y + ¢ = 1,6 %¢y + €2c, = 0 for
coefficients; get solution
y(x)=(1-e®) e+ (1) Te



just for practice: viewing solns with MATLAB/OCTAVE

x = 0:.001:1;

vyl = exp(-4*x); y2 = exp(2+x);
yIVP = (1/3)*yl + (2/3)*y2;
yBVP
plot (x,yIVP,x,yBVP), grid on
legend (" IVP soln’,’BVP soln’)

5

VP Soln
BVP soln

(1/(1l-exp(-6)))*yl + (1/(l-exp(6)))*y2;
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obvious name: “two-point BVP” Voo Problems: ”
Numerical
Approaches

again: Bueler
Example 2: ODE BVP. find y(x) if _
y” + 2y/ — 8y = 0’ y(O) = 1’ y('l) =0 serious example

finite difference

shooting

e Example 2is called a "two-point BVP” because the solution """
is known at two points (duh!) solved '

e atwo-point BVP includes an ODE and the value of the s
solution at two different locations

o the ODE can be of any order, as long as it is at least two,
because first-order ODEs cannot satisfy two conditions
(generally)

e butthere is no guarantee that a two-point BVP can be
solved (see below), even though that is the usual case

o we will also be considering boundary value problems for
PDEs in this course (i.e. problems including no initial
values); these are “oco-point BVPs” | suppose



recall: a standard manipulation of a 2nd order ODE
Consider the general linear 2nd-order ODE:

y"'+p(X)y" +a(x)y = r(x) (1)
Also consider the (almost-completely) general 2nd-order ODE:
y'=1xy,y) (2)

these can be written as systems of coupled 1st-order ODEs
in fact, equation (1) is equivalent to

(&) B (—P(X)V - C‘l/(X)y + f(X)>

and equation (2) is equivalent to

() = (a5

first order systems are the form in which we can apply a
numerical ODE solver to solve both IVPs and BVPs

... but BVPs generally require additional iteration
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why IVP are better problems than BVPs Value Problems:
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¢ |VPs with well-behaved parts do have unique solutions

o we say they are “well-posed”; specifically: —
serious example
e Theorem. Consider the system of ODEs A—
shooting
y = f(t7 V), (3) :2&21:15 example:
where y(t) = (y1(t),...,yq(t)) and f = (f1,...,fy) are erereises

vector-valued functions. If f is continuous for ¢ in an interval
around fy and for y in some region around yo, and if 0f;/dy;
is continuous for the same inputs and for all / and j, then
the IVP consisting of (3) and y(f) = yo has a unique
solution y(t) for at least some small interval

fo —e < t<ty+eforsomee>0.

e given comments on last slide, the theorem covers IVPs for
2nd-order scalar ODEs



warning about apparently-easy BVPs Voo Problems: ”
Numerical
Example 3: ODE BVP.  find y(x) if R

y”+772y:0» y(0)=1, y(1)=0 _

« this turns out to be impossible ... . there is no such y(x) e
e in fact, the general solution to the ODE is shooting

serious example:
solved

y(x) = ¢y cos(nx) + ¢ sin(mx)

so the first boundary condition implies ¢; = 1 (because
sin(0) = 0)
e ...but then the second condition says

“  0=y(1)=-1+csin(x) "

and this has no solution because sin(7) = 0

o this is a constant-coefficient problem for which all the
“parts” are “well-behaved”; we can even easily write down
the general solution!



two-point BVPs related to eigenvalue problems
e homogeneous linear two-point BVPs like

y'"+p(x)y +q(x)y =Xy, y(a=0, y(b)=0 (4)

are called Sturm-Liouville problems
o they are analogous to eigenvalue problems “Ax = Ax”
where the X values and the vectors x are unknown
e )\ is an eigenvalue; there are finitely-many
e X # 0 is an eigenvector associated to A
e in the Sturm-Liouville problem (4), the “matrix” is the
operator

d d
A= 2+ P02 +a(x)

(though the operator A must somehow also include the
homogeneous boundary conditions)

¢ in (4) we seek eigenvalues A\ = \,, which come in an
infinite-but-countable list, and their associated
eigenfunctions y = yn(x)

o Sturm-Liouville theory “explains” the impossible case on
the previous slide ... but this Sturm-Liouville thread will not
be pursued further here ...
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Outline

@ a more serious example: a BVP for equilibrium heat
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an equilibrium heat example

e as noted in lecture and by Morton & Mayers, a PDE like
this is a general description of heat flow in a rod:

pc% = gx <k(x)g;’) + r(x)u+ s(x) (5)

o recall that, roughly speaking, p is a density, ¢ a specific
heat, k a conductivity, r(x) a reaction coefficient (because
r(x)u is the heat produced by a temperature-dependent
chemical reaction, for example), and s(x) is an external (u
independent) source of heat
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an equilibrium heat example, cont

e equilibrium means no change in time; the equilibrium

version of (5) is this:

0 0 (k(x)au

T ox

e because we can use ordinary derivative notation, and
slightly-rearrange, the equilibrium eqgaution is an ODE:

ox

) + r(x)u + s(x)

(k(X)U') + r(x)u = —s(x)

e let’s suppose therod has length L, and 0 < x < L

(6)

e example boundary values are (i) insulation at the left end

and (ii) pre-determined temperature at the right end:

(7)
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an equilibrium heat example, cont, cont

e some concrete, generally-non-constant choices in my

example include L = 3 and:

0.5

k(x) = %arctan(20(x -1)+1,

s(x) = e~ (x-2F

T
X
r(x)=()r(g
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example, as code M

Numerical
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Bueler
classical IVPs and
e code used to produce the previous picture BVPs
[ serious example
L = 3 finite difference
4
k = @(x) 0.5 % atan((x-1.0) % 20.0) + 1.0; stiocting
i le:
r0 = 0.5; e
S = @(x) exp(—-(x-2.0).%2); exercises
J = 300;

dx = L / J;

x = 0:dx:L;

plot (x,k(x),x,r0xones (size(x)),x,s(x))
grid on, xlabel x

legend ("k(x)’,’'r(x)=r_0","s(x)")



1 H I’ Two-point Boundar
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we now have a non-constant-coefficient boundary value
problem to solve:

classical IVPs and
BVPs

(kXU +pu=—s(x), U (0)=0, wu@) =0 (8) [EEEEEEHEN
finite difference
e u(x) represents the equilibrium distribution of temperature shooting
in a rod with these properties: serious oxampe:
e conductivity k(x): the first third [0, 1] is a material with much
lower conductivity than the last two-thirds [2, 3]
e reaction rate ry > 0: constant rate of linear-in-temperature
heating
e source term s(x): an external heat source concentrated
around x = 2

worth drawing a picture of the rod and its surroundings:
shading for k(x), candles for s(x), insulated end,
refrigerated end, ...

a concrete Question: what is u(0), the temperature at the
left end?

exercises



plan from here

@ introduce finite difference approach on really-easy “toy”
two-point BVP

@® introduce shooting method on same toy problem
® demonstrate both approaches on “serious problem”
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Outline

© finite difference solution of two-point BVPs
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finite differences

o finite difference methods for two-point BVPs generalize to
PDEs ... as demonstrated in the rest of Math 615!

e but here we are just solving ODEs

o recall | showed this using a
Taylor’s-theorem-with-remainder argument:

f(x — h) = 2f(x) + f(x + h)

f(4)(V) 2
h? h

12

= () +
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toy example problem

consider this easy BVP:
y'=12x%  y(0)=0, y(1)=0

it has exact solution y(x) = x* — x
...please check my last claim

...and be sure you could construct this exact solution by
integrating
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toy example: approximated by finite differences

cut up the interval [0, 1] into J subintervals:

x=0+(—1)Ax

note that my indices runfromj=1toj=J+ 1

Ax=1/J

let Y; be the approximation to y(x;)
foreach of j =2,...,J we approximate

by

the boundary conditions are: Y1 =0, Y,.1 =0

y" =12x°

Yio1 —2Yi+ Y4

Ax?

G=1,....,d+1)
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toy example: approximated by finite differences, cont

e s0 now we have a linear system of J + 1 equations in J + 1
unknowns:
Yi=0
Yy —2Ys + Y3 = 12AX%X3
Yo —2Y3 + Yy = 12Ax2x2

Yy_1—2Y 4 Y1 = 12Ax2x3
Yi41 =0
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toy example: as matrix problem

e this is a matrix problem:

1
1
0

0 0 0 0] [ Y4
2 1 0 ... 0l|VY
1 -2 1 ol | Ys
1 -2 1| v,
0 0 1] |Yy4]

AY=Db

12AX%x2
12AxX2x5

12Ax2x3
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toy example: as matrix problem in OCTAVE

the matrix A is tridiagonal

which is usually true of finite difference methods for
two-point boundary value problems for second order ODEs

A has lots of zero entries, so in MATLAB/OCTAVE we store it
as a “sparse” matrix

this means that the locations of nonzero entries, and the
matrix entries at those locations, are stored; this saves
space

also there are “expert systems” in MATLAB/OCTAVE which
recognize sparsity and then try to exploit it to speed up
matrix/vector operations

practical MATLAB/OCTAVE advice: learn how to use spy
and full to see these sparse matrix structures

Two-point Boundary
Value Problems:
Numerical
Approaches

Bueler

classical IVPs and
BVPs

serious example
shooting

serious example:
solved

exercises



toy example: as matrix problem in OCTAVE, cont Vatve problems.

Numerical
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e setting up the matrix problem looks like:

classical IVPs and

J=10; dx = 1/J; x = (0:dx:1)"'; BVPs
b = zeros(J+1,1); serious example
b(2:J) = 12 » dx*2 * x(2:J)."2; | finite difference
A = sparse (J+1,J+1); shooting
A(l,1) = 1.0; A(J+1,J+1) = 1.0; :2{Lc;l:jsexample:
for j=2:J )

exercises

A(3,[3-1, 3, 3+11) = [1, -2, 11;

end

e solving the matrix problem looks like:
Y = A\ b; % solve A Y = b
¢ plot on next page from

)

% also get exact soln on fine grid:

xf = 0:1/1000:1; vyexact = xf.”4 - xf;
plot(x,Y,’o’, 'markersize’,12,xf,yexact)

grid on, xlabel x, legend(’finite diff’,’exact’)



toy example: as matrix problem in OCTAVE, cont, cont

e gives result which is better than we have any reason to

expect:

o®

-0.1

-0.2

-0.3

-0.4

-0.5

finite diff
exact

O

/

f

/

0.8
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toy example with finite differences: brief analysis

regarding how the result on the previous slide can be so

suspiciously nice:

e recall that the exact solution is y(x) = x* — x

e recall we had

f(x — h) = 2f(x) + f(x + h)

h2

e applied to f(x) = y(x), for which y(*)(x) = 24 is constant,
we see that the finite difference approximation to the
second derivative in the ODE y” = 12x2 has error at most

y®(v)
12

because Ax = 0.1

e this is a rare case where the local truncation error is a

AX

2 24

12

=)+

(0.1)2 = 0.02

known constant ... and fairly small

f(4)(y)

12

h2
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toy example with finite differences: brief analysis, cont

let &; = Y; — y(x)
by subtraction,

61— 26 + &1
Ax?

=0.02

andey=¢€y,1=0
so (after bit of not-too-hard thought)
g =0.01x(x;— 1)

SO
max | Y; — y(x;)| = max|ej| = 0.0025
/ /

which explains why picture a few slides back was good
... but showed slight errors close to screen resolution
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Outline

O shooting to solve two-point BVPs
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toy example problem again: shooting Vatve problems.

Numerical
Approaches
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e recall this “toy” ODE BVP:

classical IVPs and

‘y// - 12X2’ ‘y(o) - 07 y(1) - 0 jevr::SUS example
(which has exact solution y(x) = x* — x) &

e this time we think: if only it were an ODE IVP then we could serious exampie:

apply a numerical ODE solver like ode45 or 1sode e
¢ indeed, this ODE IVP

exercises

w' =12x2, w(0) =0, w/(0)=A

can be solved by a numerical ODE solver, for any A

¢ solving this ODE IVP involves “aiming” by guessing an
initial slope w’(0) = A

e ...and “hitting the target” is getting the desired boundary
value w(1) = 0 correct, so that y(x) = w(x) in that case

1.31



toy example shooting, cont

o forillustrating the method, I'll skip the use of a numerical
ODE solver because the ODE IVP

w’=12x%, w(0)=0, w(0)=A
has a solution we can get by-hand:

w(x) = x* + Ax

e plotting for A= —-2.5,—-1.5,-0.5,0.5,1.5 gives this figure:

A=05

— / A=15
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toy example shooting, cont, cont

we have “aimed” (by choosing A) and “shot” five times
“shot” = (computed the solution to an ODE IVP); generally
this would be solving the ODE IVP numerically

we missed every time

but we have bracketed the correct right-hand boundary
condition y(1) = 0 with the two values A= —1.5 and
A=-05

a numerical equation solver can refine the search to
converge to the correct A value ... which we know would by
A= —1inthis case

...the last idea is best illustrated by example
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shooting: solving the boundary condition equation
e recall our ODE BVP
y'=12x%,  y(0)=0, y(1)=0
is replaced by this ODE IVP when “shooting”:
w’ =12x%, w(0)=0, w(0)=A 9)
e the x = 1 endpoint value of w(x) is a function of A:
F(A) = (w(1), where w solves (9))
¢ and so we solve this equation because we want y(1) = 0:
F(A)=0

e in this easy problem, w(x) = x* + Ax
e sowe solve F(A)=1+A=0andget A= —1

e generally we solve F(A) = 0 numerically, e.g. by the
bisection or secant methods
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shooting: general strategy for two-point ODE BVPs

¢ identify one end of the interval x = b as the target

o at the other end x = a, identify some additional initial
conditions which would give a well-posed ODE IVP

o for various guesses of those additional initial conditions,
“shoot” by solving the corresponding ODE IVP from x = a
tox=>

e ask whether you “hit the target” by asking whether the
boundary conditions at x = b are satisfied

¢ automate the adjustment process by using an equation
solver (e.g. bisection or secant method) on the equation
that says “the discrepancy between the solution of the ODE
IVP at x = b and the desired boundary conditions at x = b,
as a function of the additional initial conditions, should be
zero: F(A)=0"

Two-point Boundary
Value Problems:
Numerical
Approaches

Bueler

classical IVPs and
BVPs

serious example
finite difference

serious example:
solved

exercises

1.35



Two-point Boundary

outline Value Problems:

Numerical
Approaches
Bueler

classical IVPs and
BVPs

serious example
finite difference

shooting

exercises

@ a more serious example: solutions
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recall the serious example
e recall the “serious” non-constant-coefficient BVP:
(kOO)U) +u=—s(x), U (0)=0, u(8) =0, (10)

e u(x) is the equilibrium temperature in a rod

¢ the conductivity k(x) has a big jump at x = 1 and the heat
source s(x) is concentrated at x = 2:

2 i
r(x): =()|%

05
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finite differences: need staggered grid

finite difference approach first
as before: J subintervals, Ax = 1/J, and

Xxi=(—1)Ax forj=1,...,J+1

let U; be our finite diff. approx. to u(x;)
let ki = k(x;) and s; = s(x;); we know these exactly
note: if q(x) = —k(x)u'(x)—think Fourier'—then we are
solving
—q + rpu = —s(x)
the finite difference version looks like
Qi+1/2 — Qj—1)2

— T U = —s()

or

U;
—k(X/ 1/2) ]ij :

AX

U
k(Xj+1/2) &

+ U = —s(x)
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...or (just notation)

kj+1(l.]/‘+1 - L]j) - kj'fl(L]j - Lj]‘_1) classical IVPs and
2 5 2 + rOUj =5 BVPs
AX serious example

finite difference

or (clear denominators)

shooting

Koy (Uit — U)— ks (U= U 1) + 0020 = —siax? R

or

f 1Uj,1 — (k/_% + k;

2 _ A x2
oy~ o) Uy K Uy = 5

like the “toy” example earlier, this last form is a tridiagonal
matrix equation AU = b

note we actually evaluate the conductivity k(x), and the
flux q, on the staggered grid

the deeper reason why we use the staggered grid will be
revealed later in class . ..

1.39



finite differences: remember the boundary conditions

recall we have boundary condition v'(0) = 0
approximate this by

U — Uy

AX =0

-U+U=0

we will see there is a more-accurate way later ...
also we have u(L) =0 so

U1 =0
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finite differences for the “serious problem”

e now for an actual code: see varheatFD.m online
e the ODE setup:

L = 3,

k = @(x) 0.5  atan((x-1.0) » 20.0) + 1.0;

s = @(x) exp(—-(x-2.0).72);

r0 = 0.5;

dx =1L/ J;

X = (0:dx:L)" % regular grid
xstag = ((dx/2) :dx:L-(dx/2))" % staggered grid

o

kstag = k(xstag);
e the matrix problem setup:

% right side is J+1 length column vector

b = [0;
- dx"2 x s(x(2:J));
01;
% matrix is tridiagonal
A = sparse(J+1,J+1);
A(1,[1 2]) = [-1.0 1.0];
for j=1:J-1
A(3+1,3) = kstag(J);
A(j+1, 3+1) = - kstag(3j) - kstag(j+l) + r0 » dx"2;
A(j+1,3J+2) = kstag(j+1);
end

A(J+1,J+1) = 1.0;

s
k(x) on staggered grid
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finite differences for the “serious problem”, cont

e itis good to use “spy (2)” at this point to see the matrix
structure; this is the J = 10 case

0

10 o 0 o0

12

nz =30

Two-point Boundary
Value Problems:
Numerical
Approaches

Bueler

classical IVPs and
BVPs

serious example
finite difference

shooting

exercises



finite differences for the “serious problem”, cont, cont SR
Approsches
Bueler
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e the matrix solve:

finite difference

U=A2A\ b; % soln is J+1 column vector shooting
L] the p|0t details: exercises
figure (1)

plot(x,k(x),’'r’,x,s(x),"b",...
x,U0’,’g*", " markersize’, 3)

grid on, xlabel x

legend("k(x)’,’s(x)","solution U_j")



finite difference solution to “serious problem”

o the picture when J = 60:

result of FINITE DIFFERENCES: u(0) = -5.666658

2 T T T T T
1F 4
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finite difference solution to “serious problem”, cont

e recall our concrete goal was to estimate u(0)
e clearly we should try different J values to estimate:

J

estimate of u(0)

10
20
60
200
1000
4000

e this suggests that u(0) ~

-13.86507
-7.20263
-5.66666
-5.27443
-5.15199
-5.12965

-5.13

e How do we know how wrong we are?
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shooting for the “serious problem”

¢ shooting is implemented these codes online:

e varheatSHOOT.m: OCTAVE version using 1sode
e varheatSHOOTmat .m: MATLAB version using ode45

o the setup (OCTAVE version):

L
k
s

0

K

o

@

o

oo

(¢}

S
3;
@ (x)
@(x)
= 0.5;

DE Y’ = G(Y,x)

@(y,x)

0.5 * atan((x-1.0) % 20.0) + 1.0;
exp (- (x-2.0).%2);

o

Y(1) =u
Y(2) =g

bracket unknown u(0)

-10.0;
0.0;

3
s

o

produces u(3) which is too high
. u(3) which is too low

is described by this right-hand side:
[-Y(2) / k(x);
r0 * Y(1) + s(x)]; s
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shooting for the “serious problem”, cont i Problens:”
Approsches
Bueler

¢ the bisection implementation (OCTAVE version), which
starts from initial bracket [a, b] = [-10.0,0.0]: dlassical IVPs and

BVPs

serious example

N = 100;
for n = 1:N shooting
fporintf (' .")
¢ - (ath)/2; Fiaal
evaluate F(c) = (estimate of u(3) using u(0)=c) exercises
Y lsode (G, [c; 0.0]1,[0.0 3.01);
F=Y(2,1);
if abs(F) < le-12
break % we are done
elseif F >= 0.0

finite difference

o°

a = c;
else

b = c¢;
end

end



shooting for the “serious problem”, cont Two-point Boundary
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e the finish: serious example

finite difference

% redo to get final version on a grid for plot SRt

x = 0:0.05:3.0; IIIIIIIII
Y = lsode (G, [c; 0.01,x); ,
u=Y(:,1)"; exercises
q=Y(:,2)";

figure (2)

plOt(X'k(X)’,r,’X’S(X)I,b’IXrur,g*’rXIqI’k’)
grid on, xlabel x
legend ("k(x)’, 's(x)","u(x)", q(x)")
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e the picture:

result of SHOOTING: u(0) = -5.144434 classical IVPs and
T T T
BVPs

serious example
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e default use of 1sode gives estimate u(0) = —5.14443
e How do we know how wrong we are?



minimal conclusion

finite difference and shooting methods give comparable
solutions to this “serious problem”

closer inspection of the programs above will help
understand the methods

better understanding will also follow from doing the
exercises 1 through 5 on the last three slides

...which forms Assignment # 3
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Outline

O exercises
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exercises

@ Solve by-hand this ODE BVP to find y(x):

y'+2y'+2y=0, y(0)=1, y(1)=0.

@® Recall Example 3, an impossible-to-solve ODE BVP. Nonetheless
there are some values of A in the following problem which allow a
solution: find y(x) if

y'+rfy=0 y0)=1, y(1)=A

What values of A are allowed? For an allowed value of A, how

many solutions are there?

@® Equation (6) has non-constant coefficients, and essentially it
cannot be solved exactly by hand. To develop some sense of the
effect of the source term s(x), solve by-hand this ODE BVP

(kot') = =s(x),  U(0)=0, u(L)=0,
merely assuming the source is quadratic (s(x) = ax? + bx + ¢)

and the conductivity is constant (ko > 0). Compute by-hand u(0).

How does the solution u(x) depend on s(x)? (For example, how

does u depend on the sign, values, slope, or concavity of s(x)?)
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exercises, cont

@ Apply the finite difference method to solve this ODE BVP:

y' +sin(x)y =x*—x,  y(0)=0, y(1)=0.
In particular, use J = 10, Ax = 1/J, and x; = jAx for
j=0,...,d. Construct the system

Ay=D>b

where Ais a (J + 1) x (J + 1) matrix, y = {Y;} approximates the
unknowns {y(x;)}, and b contains the right-side function “x® — x”
in the ODE. Arrange things so that the first equation in the system
represents the boundary condition “y(0) = 0” and the last
equation the condition “y(1) = 0”. The remaining equations in the
system will each hold finite difference approximations of the ODE.
Show me your matrix A in a non-wasteful way. Solve the system
to find y, and plot it appropriately. Also write a few sentences
addressing how to know qualitatively and quantitatively the
degree to which your answer is a good approximation.
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exercises, cont, cont

@® (The goal of this problem is to understand shooting, though you
will not quite put all parts together . ..)

Consider the nonlinear ODE BVP

U +1P=0, wu0)=1, u(1)=0.
This problem is well-suited to the shooting method. Specifically,
write a MOP program that uses an ODE solver to solve the
following ODE IVP

U+ =0, wuw0)=1, U(0)=A

for each of the eleven values A= —5,—-4,...,4,5. Plot all eleven

solutions, and identify on the plot' the A value for each curve.
Which two A values make the computed value u(1) bracket the
desired value (boundary condition) “u(1) = 0”?

(With this information in hand you could make a program like
varheat SHOOT . m, which uses bisection to converge to an A
value so that u(1) ~ 0 to many-digit-accuracy.)

TPossibly using the text command in MATLAB/OCTAVE.
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