Collocation approximation of the monodromy operator of periodic, linear DDEs

Ed Bueler 1, Victoria Averina 2, and Eric Butcher 3

13 July, 2004
SIAM Annual Meeting 2004, Portland

1=Dept. of Math. Sci., Univ. of Alaska;
2=Dept. of Math., Univ. of Minnesota, Twin Cities;
3=Dept. of Mech. Engr., Univ. of Alaska.
Thanks

Based on joint work with
Venkatesh Deshmukh, Praveen Nindujarla, and Haitao Ma.

Supported in part by NSF Grant No. 0114500.

Thanks to David Gilsinn for organizing this Minisymposium!
Outline

1. stability chart examples from machining
2. abstractions for periodic, linear DDEs
3. Chebyshev collocation
4. estimates for ODE initial value problems
5. approximation of the monodromy operator
Example 1: Turning

1 DOF model for regenerative vibrations of cutting tool with mass m, stiffness k, and damping c:

\[m\ddot{x} + c\dot{x} + kx = \Delta F_x \]

$\Delta F_x = \Delta F_x(f)$ is x-component of cutting force variation, fcn of chip thickness f. Linearizing at prescribed thickness f_0 gives (for k_1 is constant)\(^a\)

\[\Delta F_x \approx k_1(x(t - \tau) - x(t)) \]

\(^a\tau\) is rotation time of workpiece; $\Omega = 60/\tau$ is rot. rate (RPM)
QUESTION: Suppose m, c, k are fixed. For which values Ω, k_1 is this turning DDE (linearly) stablea?

aDefinition. A linear, homogeneous DDE is stable (i.e. asymptotically stable) if all solutions decay to zero.
Example 1: Turning stability chart

(Based on 150 × 150 points in parameter plane. Compare to exact chart. For $\Omega \gtrsim 1000$, boundary comes within one point of correct. For $\Omega \lesssim 1000$, problem is stiffness, below.)
Example 2: (Interrupted) milling

1 DOF linearized model for regenerative vibrations:

\[m \ddot{x} + c \dot{x} + k x = w h(t)(x(t - \tau) - x(t)) \]

But \(h(t) \) has the following nonsmooth, time-dependent form:

\[
\begin{array}{c}
\text{QUESTION: Suppose } m, c, k \text{ all fixed. For which values } \\
\Omega = 60/\tau, w \text{ is this milling DDE stable?}
\end{array}
\]
Example 2: Milling stability chart

(Compare to Insperger, et al., *Multiple chatter frequencies in milling processes*, J. Sound Vibration (2003).)
Conventions

- We consider \textit{linear, periodic-coefficient DDEs with fixed delays}. We assume rational relations among delays and coefficient periods. (For this talk: only one delay and period=delay.)

- Put in standard first-order form

 \[\dot{y}(t) = A(t, \epsilon)y(t) + B(t, \epsilon)y(t - \tau) \]

 where \(A, B \) have \(\tau \)-periodic dependence on \(t \) and depend continuously on parameters \(\epsilon \in \mathbb{R}^d \) (typically \(d = 1, 2, 3 \)).

- We assume \(A, B \) are \textit{piecewise analytic} functions of \(t \).
Our Mission

- Construct a fast and accurate numerical method (based on *Chebyshev collocation*, below) for stability charts for linear, periodic DDE problems with piecewise-analytic coefficients.

- Prove it works. (Prove estimates for accuracy of IVP solutions. Prove estimates for eigenvalues.)

- Build an easy to use MATLAB package to implement it.

(STATUS July 2004: Mostly done including estimates (for constant non-delayed-coefficient cases). MATLAB suite in early version. See website www.cs.uaf.edu/~bueler/DDEcharts.htm.)
Recall (for linear, periodic DDE)

Initial value problem

\[\dot{y} = A(t)y + B(t)y_{-\tau}, \quad y(t) = \phi(t) \text{ for } t \in [-\tau, 0] \]

has solution (monodromy; delayed FTM):

\[(U\mathbf{f})(t) = \Phi(t) \left[\mathbf{f}(1) + \int_{-1}^{t} \Phi^{-1}(s)B(s)\mathbf{f}(s) \, ds \right] \]

(where \(\dot{\Phi} = A(t)\Phi, \Phi(0) = I \)).

Soln of IVP:

\[y_{n+1} = Uy_n, \quad y_0 = \phi \]
Abstract view of linear, periodic DDE

U is a compact operator on $C([0, \tau])$.

Our class of DDE are simply linear difference eqns with compact generator in $C([0, \tau])$: $y_{n+1} = Uy_n$.

Compact ops are (norm-)limits of finite rank operators.

Stability: $\rho(U) < 1$ if and only if DDE is stable.\(^b\)

\(^a\)It is formed from an integral operator and $f \mapsto f(1)$, a finite rank operator.

\(^b\)Caveat: this is eigenvalue stability. Degree of nonnormality of U does matter.
Chebyshev poly approx: 3 good reasons

- Polynomial and Fourier approximation (“spectral approximation”) converges faster than finite diff or finite elem or cubic splines or wavelets on analytic functions.

- Though the coefficients in our DDE are periodic the solutions are not. Thus Fourier not so good. (Also: poly approx can be good on each piece of a piecewise-analytic fcn without generating Gibbs phenomena.)

- Chebyshev points are nearly optimal polynomial interpolation points for minimizing uniform error.
Chebyshev collocation points

Chebyshev poly approx can be implemented by *collocation*. For degree N, Cheb collocation points are

$$t_j = \cos\left(j \frac{\pi}{N}\right), \quad j = 0, \ldots, N.$$

(t_j are projections of equally-spaced points on unit circlea).

Note $t_j \in [-1, 1]$. (If needed, shift the t_j to interval $[0, \tau]$.)

aThe *Fourier* collocation points. Cheb collocation can be implemented by FFT.
Cheb spectral differentiation

1. Given $f(t)$ on $[-1, 1]$.
2. Construct interpolating polynomial $p(t)$: $p(t_j) = f(t_j)$.
3. Find \dot{p}.
4. Evaluate it at t_j: $\dot{f}(t_j) \approx \dot{p}(t_j)$.

This gives a matrix approximation of derivative $\frac{d}{dt}$:

$$\dot{f} \approx \dot{p} \quad \text{(represented by)} \quad D_N \nu$$
Cheb collocation approx of U

Use Cheb matrix approximations: (i) $D_N \approx \frac{d}{dt}$ (of a vector-valued fcn); (ii) $M_A \approx$ (mult by $A(t)$); (iii) $M_B \approx$ (mult by $B(t)$). Modify these to incorporate ODE initial condition: $y(0) = \phi(0)$.

\[
\dot{y} = A(t)y + B(t)y_{-\tau} \text{ with } y(t) = \phi(t), \ t \in [-\tau, 0]
\]

is approximated by

\[
D_N v = M_A v + M_B w
\]

(here $v \approx y$, $w \approx \phi$).

Solving for v is approximating U:

\[
U \approx U_N \equiv (D_N - M_A)^{-1} M_B.
\]
Consider scalar DDE: $\dot{x} = -x + \frac{1}{2}x_{-2}$ with $N = 3$. Then D_N, M_A, M_B, and $U_N = (D_N - M_A)^{-1}M_B$ are 4×4 matrices. Last rows modified to enforce initial condition. D_N, U_N generally dense.

\[
M_A = \begin{pmatrix} -1 & -1 & -1 \\ -1 & -1 & 0 \end{pmatrix}, \quad M_B = \begin{pmatrix} 1/2 & 1/2 \\ 1 & 1/2 & 0 \end{pmatrix}
\]

\[
D_N = \begin{pmatrix} 19/6 & -4 & 4/3 & -1/2 \\ 1 & -1/3 & -1 & 1/3 \\ -1/3 & 1 & 1/3 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad U_N = \begin{pmatrix} 0.2058 & 0.2469 & 0.1152 & 0 \\ 0.1852 & 0.2222 & 0.2037 & 0 \\ 0.6626 & -0.1049 & 0.2510 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}
\]
Example: Eigs of a scalar DDE

For $\dot{x} = -x + (1/2)x_{-1}$ we compare U_N eigenvalues to exact:

“Exact” method: Each root $\mu \in \mathbb{C}$ of characteristic eqn $\mu = -1 + 0.5e^{-\mu}$ is eigenvalue of U. Reduce char eqn to real variable problem. Solve by robust one-variable method (e.g. bisection) to 10^{-14} relative accuracy.

vs

Cheb collocation with $N = 29$: Compute U_N. Find eigs of U_N.

RESULT: Largest 7 eigenvalues of U_N are each accurate to more than 12 digits.
Example, cont

For remaining 23 eigenvalues, here’s the picture:

SUMMARY: Over 100 digits of correct eigenvalues from 30×30 matrix approx of U.
Only eigs near $0 \in \mathbb{C}$ are inaccurate (irrelevant for stability).
Cost of a stability chart

Using numerical method to produce $m \times m$ approximation to U, the time to produce a chart is

$$O((\# \text{ of pixels}) \cdot m^3)$$

with standard estimates on QR method for eigenvalues.

m matters! Small is good!
Accuracy of Chebyshev interpolation

Theorem [classical]. Let p be degree N poly for f using $N + 1$ Cheb colloc pts. If f analytic in a \mathcal{C}-neighborhood R of $[-1, 1]$ then there exists C s. t.

$$\|f - p\|_{\infty} \leq C(S + s)^{-N}$$

where S, s are semi axes of ellipse E s. t. $[-1, 1] \subset E \subset R$.

Moral: If f analytic then p improves by a fixed number of digits per increase by one in N.
Theorem. Consider IVP \(\dot{y} = ay + b(t)y_{-\tau}, y(t) = \phi(t) \) for \(t \in [-\tau, 0] \). Let \(q \) be the interpolating poly of delayed term \(b\phi \). Find degree \(N \) collocation solution \(p(t) \), a polynomial. Then

\[
\| y - p \|_\infty \leq c_1\| q - b\phi \|_\infty + c_2|\dot{p}(0) - a\phi(0) - b(0)\phi(-\tau)|.
\]

\(c_1, c_2 \) depend on \(a \) but are \(O(1) \) in \(N \).

Thus

- Error has two sources: (i) interpolation error for delayed term; (ii) residual error at initial time from difficulty of nonhomogeneous ODE problem.

- \textit{a posteriori} result: Do computation, get \textit{proven} estimate of quality of solution based on result.
Example: accuracy in DDE IVP

Find $y(t)$ on $[0, 2]$ if $\dot{y} = 3y + (t - 1)y_{-2}$, $\phi(t) = 1$.

![Graph showing estimate and actual error for different N values]
Estimates for eigenvalues of U

In basis of Chebyshev polynomials $\{T_j\}$, matrix entries of U on $C([-1, 1])$ can be computed by inner products: $U_{jk} = \langle T_j, UT_k \rangle$.

Note $y = UT_k$ is the solution of an IVP. We use previous $a posteriori$ estimate to show $\|UT_k - (U_N)T_k\|$ smalla for k up to about $\frac{3}{4}N$.

Now use eigenvalue perturbation theoryb to show large eigenvalues of U_N are close to those of U.

aRecall U_N is Chebyshev approximation to U.

bAn extension of the Bauer-Fike theorem to compact operators on Hilbert spaces; need to transfer U to act on Sobolev space H^1_{Cheb}.
Provable eigenvalues of U.

Example: Consider $\dot{y} = -2y + (1 + \sin(3\pi t))y_{-2}$. Let $N = 95$.

Result: Dots are eigs of U_N; discs are *proven* error bounds for sufficiently large eigs of U. (If μ is an eig of U and $|\mu| \geq 0.2$ then μ is in one of these discs.) This DDE is *proven stable*.

Size of discs drops exponentially with increasing $N \gtrsim 90$ (this example).
Why one really cares about U

The interesting systems are nonlinear DDEs. The linear, periodic DDEs are just their linearizations.

Questions about nonlinear DDE:
- find fixed points and periodic orbits
- nature of bifurcations?

To study the latter question we need good bases for spaces of stable and unstable directions. Good approximation to U means good bases for these purposes.

But that’s another talk . . .